
1

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Football Tournament Generator
EXEMPLAR PROJECT BY A. STUDENT

I want to create a computerised solution for creating and sharing football tournament

information. This is so that league participants can quickly see where they are in the league

and which teams they will be playing.

Analysis 4

Identifying solution features based on research of existing solutions 4

Sports Tournament Spreadsheet 4

Winner 4

Score7 5

Describing and justifying an approach based on research of existing solutions 6

Spreadsheet-based Solution e.g. Sports Tournament Spreadsheet 6

Mobile App e.g. Winner 6

Website e.g. Score7 6

Standalone Application 7

Conclusion: Justification of approach based on research 7

Features, measurable success criteria and justifying the limitation of features (scope) of

this project 7

Functionality 7

Explanation for features to include 9

Explanation for features to exclude 9

Robustness 9

Usability (User Interface) 11

How to measure the success criteria 12

Concluding comment 12

Justifying hardware and software requirements for this project 12

Software 12

Hardware 14

Stakeholders and justification of how the solution may meet their needs 14

Identification of stakeholders 14

Stakeholder needs and how the solution may meet them 14

Stakeholder expectations conclusion 15

Justification of features that make it solvable by computational methods 15

Algorithms can be used as following: 15

2

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Network and storage 16

Databases 16

Decomposition 16

Design 16

Justification of usability features 16

UI Approaches 19

Program structure 19

Tournament creation 19

Match management 20

Tournament standings 20

Key variables, data structures, classes as appropriate 20

Key Classes: Client 21

Key functions: server 22

Key Data Structures 23

Database structure 24

Key Variables 24

Validation required and test data to use during development 25

Client-side 25

Server-side 26

Algorithm design 26

Client-side 26

Server-side algorithms 34

Post development test data 38

Development & Testing 39

User Interface 39

Responding to a generated user URL and creating a tournament 42

Loading a tournament from a database server 44

Creating the database 45

Tournament standings: Processing the tournament data 50

Usability: Navigation and showing each “screen” 51

Usability: Help message location 55

Tournament Access URLs 55

Sorting Teams 57

Displaying the tournament name 57

Tournament management: Naming/Renaming the tournament 58

Server side - saving the tournament data - validating the JSON 60

3

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Finishing tournament save 62

Adding/renaming/removing teams 66

Matches - viewing and changing score 74

Tournament Standings: Viewing 77

Tournament Creation: Enhancement 79

Usability: Final design changes 81

Post Development Testing and Evaluation 82

Functionality 82

Tournament Creation: The ability to create a tournament 82

Fixture generation: Automatically create a schedule of matches for a group tournament.

 84

Match management: The ability to record match results 85

Tournament standings: Anyone can view the tournament standings 85

Usability: Ease of use, efficiency, error handling, user-feedback 86

Robustness: stability, resilience, performance, compatibility, scalability 89

Performance 91

Scalability 91

Compatibility 92

Limitations: Extending the functionality of the project 92

Maintenance 93

Online Demo 94

4

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Analysis

Identifying solution features based on research of existing

solutions

Sports Tournament Spreadsheet

https://excel-example.com/templates/sport-tournament-template

Notable solution features to take inspiration from:

- 3 to 16 maximum teams

- Changing team names

- Settings: Points per win/draw/loss

- Enter bonus or penalty points

- Enter scores of each match for the overall table to be updated

Winner

https://play.google.com/store/apps/details?id=il.talent.winner&hl=en&gl=US&pli=1

A multi-sports app

Notable solution features to take inspiration from:

5

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

- Multiple sports supported

- Supports league and knock-out format

- Supports adding/selecting venues

- Create teams and players

- Creates match schedules

- Statistical Analysis

- Enables scores to be added

- Menu-based user-interface

- Match data shareable with others

Score7

https://www.score7.io/en

Notable solution features to take inspiration from:

- Multiple tournament formats: Knockouts Bracket, Double-Elimination Bracket, Round-

robin League, Multistage: Round-robin Groups + Knockouts Brackets

- Select number of participating teams

- Generates a shareable web link and QR-code to enable other people to view team

standings

- Settings: Give tournaments a name and description

- Uploadable logo and changeable colours

- Tournament schedule automatically generated

6

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

- Enter date and location of matches

- Enter results for each match and see which team progresses accordingly.

- Admin users can also be added (those that can set match outcomes and change

settings).

- Web-based user interface with popups

Describing and justifying an approach based on research of

existing solutions

Spreadsheet-based Solution e.g. Sports Tournament Spreadsheet

Utilising a spreadsheet application like Microsoft Excel or Google Sheets to create a

tournament management system:

- Use worksheets to represent different tournament components such as teams,

fixtures, standings, and statistics.

- Uses built-in spreadsheet functions and formulas to automate calculations, generate

schedules, and update standings.

- Create user-friendly interfaces using cell formatting, data validation, and conditional

formatting.

- Limitations: Limited scalability, lack of real-time updates, and may require manual

data entry and management.

Mobile App e.g. Winner

- Develop a native mobile app for popular platforms, e.g iOS or Android, using

programming languages such as Swift (for iOS) or Java/Kotlin (for Android).

- Design mobile-friendly user interfaces for features like fixture generation, match

management, team/player profiles, standings, and statistical analysis.

- Implement data storage, retrieval, and synchronisation.

- Use push notifications for match reminders, updates, and communication with users.

- Utilise device-specific features like camera integration for capturing player photos

- Enhance user experience with mobile-specific features like touch gestures

- Limitations: Requires platform-specific development expertise, additional effort for

cross-platform compatibility, and may require app store approvals for distribution.

Website e.g. Score7

Develop a web-based application using web technologies such as HTML, CSS, and

JavaScript.

- Design a responsive and interactive user interface accessible from desktop and

mobile browsers. Users could access tournament data from anywhere with an

internet connection. Being web-based, the tournament data can be easily shared.

- Use server-side programming languages like Python, PHP, or Node.js to handle

backend logic, data storage, and retrieval.

- Implement features like fixture generation, match management, team/player profiles,

standings, and statistical analysis etc

- Utilise databases like MySQL or MongoDB to store and manage tournament data.

- Enable user registration and authentication for personalised experiences.

7

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

- Ensure security measures like data encryption and protection against common web

vulnerabilities.

- Limitations: Requires web development skills, hosting infrastructure, and may

require continuous server maintenance and updates.

Standalone Application

Develop a desktop application using programming languages like Java, C#, or Python.

- Design a graphical user interface (GUI) using frameworks like JavaFX, Windows

Forms, or PyQt.

- Implement features such as fixture generation, match management, team/player

profiles, standings, and statistical analysis.

- Use local databases or file storage for data management.

- Enhance user experience with intuitive navigation, drag-and-drop functionality (e.g.

changing the order of teams)

- Limitations: Platform-specific development, may require installation and updates on

users' machines, and limited accessibility compared to web or mobile solutions.

Conclusion: Justification of approach based on research

A spreadsheet would be relatively simple to make by utilising built in formulas but it lacks

flexibility and the ability to share tournament data. Making a mobile app would require

having to learn using a platform with which I am unfamiliar. For maximum compatibility I’d

have to create versions for both Android and Apple. However, I like the idea of being able to

utilise a phone’s features such as a camera, which would not be as straightforward to do

with other approaches. A website offers more flexibility than a spreadsheet, for example

there is the ability to have more control over the user interface. Additionally, I’d only have to

build a single solution that can be accessed on any internet-enabled device as opposed to

having to create multiple versions for different platforms. It is also the area with which I have

most existing expertise. A standalone application has too many limitations, for example

platform-specific solutions could limit who could use the program, and it would be tricky to

share tournament data with others.

In conclusion, I intend to develop a web-based application for this project because of its

flexibility and because of my existing experience of developing web-based applications will

mean that I am more likely to create a working solution within the given time.

Features, measurable success criteria and justifying the

limitation of features (scope) of this project

Given the amount of time and my expertise, I will limit the scope of the project to include the

following fundamental features that I have identified from my research, without which the

project would not function.

Functionality

Features identified Measurable success criteria Limitations Justification

8

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

from research and own
ideas

and justification

1. Tournament

creation: The ability

to create and name

a tournament:

a. Adding a tournament name

so it can be identified

b. Enter the number of teams

and team names (which can

be unlimited) so that teams

can be identified.

c. Generating a valid user

URL to allow data to be

viewed by others so that

data cannot easily be

changed by hackers

d. Generate an administrative

URL to enable match data

to be changed by only

administrators.

The URL could potentially

be guessed but at this stage

I do not want the complexity

of adding a login system as

it is of secondary

importance to the key part of

this project.

2. Fixture generation: a. The system will

automatically create a

schedule of matches for a

group tournament showing

home and away teams, as

balanced as possible so

each team plays both home

and away. This is important

for fairness.

Generating other formats

(e.g. a knock-out

tournament) is of secondary

importance at present

because most tournaments

that I am aware of use a

group-tournament format. I

will not take account of

venues as it is not a key to

the fundamental project.

3. Match

management: The

ability to record

match results. This

is most critical to be

able to display a

league table.

a. The person using the

‘admin’ link is able to enter

match scores. Having a

separate link for the

administrator and those

viewing the tournament will

prevent anyone

unauthorised from updating

the match scores. Match

scores need to be updated

to be able to show the

standings.

I’m not going to take

account of recording

individual player data at this

stage because it is of

secondary importance.

4. Tournament

standings:

a. The ability for anyone with

the ‘view’ URL to be able to

view the tournament

I am going to keep this

simple and not take account

of displaying this in multiple

9

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

standings so users can see

how each team is

progressing, to include

basic group information

because this is what users

will expect to see in a

tournament:

a. Score for each match

played

b. Wins

c. Draws

d. Losses

e. Games played

f. Points for

g. Points against

h. Goal difference

i. Points

formats for example that are

suitable for displaying on a

large screen or projection

device. This is not

important at this stage.

Explanation for features to include

I have chosen to do a tournament creation system because this is a common type of

tournament and likely to be most useful for my stakeholders. For a tournament to exist it

must be possible to enter a name and teams. For a tournament management system to be

useful and save the time it takes to organise who is playing at home or away, it will be

important for the project to have fixture generation to the minimal extent of deciding which

team will play at home and away, which should be evenly distributed. For a tournament

management system to be useful, it must be possible to have an element of match

management where the owner of a tournament can enter scores. The most straightforward

way of doing this initially is to do this via a private web link. Finally, in order to share current

team positions in the tournament, the project must feature accessible tournament

standings. I would like this to be accessible via a public link so that anyone playing in the

tournament or who has an interest in the tournament can view current standings.

Explanation for features to exclude

I have decided not to include: knockout stage management because I want to focus on

tournaments which in my view are the most popular and more of a challenge. I have not

included statistical analysis because this is beyond core functionality and something that

would be added at a later state. The same goes for simulation and predictions,

customisation, personalisation and branding and integration and sharing and

communication and notifications.

Robustness

Feature Success Criteria Limitations Justification

Stability a. The program will operate without

crashes, freezes, or unexpected

The project will not

consider how multiple

10

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

terminations, providing a stable and

reliable experience to users throughout

the tournament.

b. All inputs into the program will be

validated. (I will expand upon this in the

design section - validation, test data,

post-development testing). E.g.

i. Only allow the user to input 0 or

positive integers for scores.

ii. Only storing a tournament/team data if

the tournament has a name and at

least two teams.

iii. Validate the integrity of the JSON data

structure to avoid malicious data from

impacting on the operation of the

program.

people could update

scores of matches at the

same time as this gives

rise to additional

complexity that I may not

have time to develop. At

present, the assumption

is that there is one

administrator per

tournament.

Whilst many data formats

for transferring data are

possible (e.g XML) which

may facilitate exporting

tournament data for

analysis, I anticipate

storing the tournament

data using JSON to help

ensure consistency and

robustness owing to its

straightforward format

and ability to quickly

serialise and deserialise

data into text and objects.

Error

Resilience

a. The program handles unexpected

situations and user errors gracefully,

preventing data loss or corruption and

maintaining data integrity. For example,

tournament data written to the database

should be fully committed rather than

saving half of the data. The code needs

to include code to ‘catch-all’ exceptions.

Any data sent to the server needs to be

validated for data integrity to prevent

unexpected crashes, security issues or

unexpected outputs.

Error messages are shown to the end user

(see usability below)

Not all errors are likely to

be considered, e.g. a

database server being

offline. Considering all

eventualities is likely to be

too time-consuming.

Performance a. The program will respond near-instantly

to user interactions, load tournament

data immediately, and perform

calculations or updates in a timely

11

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

manner, ensuring a smooth and

responsive experience.

Compatibility a. The program works seamlessly across

different platforms (e.g. Windows,

macOS, iOS, Android) and browsers (for

web-based solutions), providing

consistent functionality and user

experience.

Scalability a. The program can handle a growing

number of teams, matches, and data

without significant degradation in

performance or functionality,

accommodating the needs of larger

tournaments or expanding user bases.

I will test the program by

adding 1000 tournaments.

This may not be indicative

of the real world.

Usability (User Interface)

Feature Success Criteria Limitations Justification

Ease of

Use

Users can quickly understand and

operate the program's functionalities

without requiring extensive training or

technical knowledge, ensuring a low

learning curve.

a. Every part of the program will include

visual labels and tooltips

b. Buttons will be touch-screen friendly

(refer to UI design in the design section)

A video to explain how to use

the program is not an essential

feature at this stage but could

be added if time allows or

sufficient users find a video

tutorial to be beneficial.

Efficiency a. Users can complete tasks efficiently

and perform operations with minimal

effort and clicks - 3 at the most,

allowing them to manage the

tournament smoothly and save time.

Error

Handling

The program effectively communicates

error messages:

a. Error message section on a web

page

b. Messages are user-friendly and easy

to understand

c. All errors are ‘caught’

Errors could include gracefully bowing out

if the server happens to be offline.

Keeping a log of errors is not

an essential requirement for an

initial version of this project.

12

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

User

Feedback

a. Users provide positive feedback

regarding the program's ease of use,

clarity of instructions, and overall

satisfaction with the user experience.

How to measure the success criteria

Each stage of iterative development will test the program for functionality and robustness.

Final post-development testing will confirm whether the functional requirements have been

met.

Subjective success criteria such as that concerning usability will be measured during post-

deployment testing in the form of feedback comments from potential users.

Concluding comment

Given the time available to create a solution and lesser importance of additional features, I

will focus solely on the features above. If time allows me to add additional features then the

idea of ‘scope’ will be revisited during the development of the project. The project will be

created with flexibility in mind to enable additional features to be added such as team and

player profiles.

Justifying hardware and software requirements for this project

Software

Integrated Development Environment (IDE) options:

- Visual Studio Code: Suitable for various programming languages.

- IntelliJ IDEA: For Java development.

- PyCharm: For Python development.

- Notepad++: A freely available editor that supports multiple languages

I have chosen Notepad++ as it is an IDE I already have; it is quick to download and takes up

minimal system resources unlike the alternatives. It also supports the desired programming

languages that I wish to use.

Programming Language:

- Java: A widely used language for desktop and mobile applications.

- Python: A versatile language (E.g. can be used as a website backend or interpreted

desktop apps).

- C#: Suitable for developing Windows applications.

- ASP.net - similar to C# but for developing web applications

- JavaScript: Used for web-based applications and mobile app development with

frameworks like React and JQuery.

- PHP: Used for web applications to write code for servers

- MySQL - Used to interface with databases

13

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

I intend to develop a web application because this is what is most accessible for the

intended stakeholders. Furthermore, it is what I am most experienced with. I will use the

following stack of languages because my expertise means that I will be able to develop the

application relatively quickly within the given time constraints.

- HTML - to layout web pages

- CSS - to format web pages

- Javascript - to provide interaction on the client-side

- PHP - to provide server-side functionality, for example to respond to requests from

the client to create a tournament, load tournament data and update team scores

- MySQL - to be able to read and write data from a database

Frameworks and Libraries: There exists various frameworks that can speed up

development for example:

- Python: Flask or Django for web development

- JavaScript: React, Angular and JQuery for web development

I am most familiar with JQuery and will be using this to speed up development on the client

side. JQuery essentially lets you do more with less code and negates the need to worry

about how different browsers interpret Javascript in different ways.

Databases:

- MySQL: A widely used open-source relational database management system.

- PostgreSQL: An open-source and relational DBMS.

- MongoDB: A NoSQL database for flexible data storage.

As already mentioned, I am most familiar with MySQL and will be using this for the

development of this project.

Database Management

Possible software to use that has a graphical user interface for creating and checking

database content:

- SQLYog

- SQLWorkbench

SQLYog has a community edition that can be used for this project. I also find that it is more

responsive and easier to use than SQLWorkbench which is why I will be using SQLYog.

Version Control System: enables changes to be tracked and collaboration with others. Git

is the most popular VCS, and platforms like GitHub and Bitbucket can host code

repositories.

I do not intend to use version control systems as I will be working on this project

independently. However, to negate file loss caused by system failure I will be using

OneDrive (a cloud-based storage solution).

14

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Server-side software: To test my project I will be using the XAMPP framework as it enables

me to quickly set up a web server (Apache) and database server (MySQL).

Additional Tools: These may include graphic design software (I am familiar with Serif

Affinity tools) for creating graphics, Flowchart.io for creating the design of the project. If this

was a team project, I’d consider using tools such as Slack or Trello for team communication

and task management. Tools such as Confluence or Markdown editors could be used for

writing project documentation.

Considerations: I will need to ensure that software is compatible with my computer and is

regularly updated to benefit from the latest features and security patches.

Hardware

I will need a device that is powerful enough to run XAMPP to be able to test my project.

According to Wikipedia (https://en.wikipedia.org/wiki/XAMPP), the requirements for XAMPP

are as follows:

Operating system: Windows Server 2008 and later. Windows Vista and later. Mac OS X

10.6 and later. CentOS, Ubuntu, Fedora, Gentoo, Arch, SUSE

Platform: IA-32 (Windows package only) and x64 (macOS and Linux packages only)

Storage size: Windows: 148 MB, Linux: 150 MB, macOS: 149 MB

I have a PC with ample specification to be able to run such software.

If I were to scale this project to make it available across the globe then I’d need to research

hosting solutions that would enable the hardware required to be scalable depending on the

demand.

Stakeholders and justification of how the solution may meet

their needs

Identification of stakeholders

There are two stakeholders. Firstly, the person in charge of creating the tournament and

entering/editing the data (see below for details). Secondly is anyone else who’d like to view

the tournament.

Stakeholder needs and how the solution may meet them

Here is a summary of my research into stakeholder needs:

Tournament Creation: They will make use of my proposed solution by naming both the

tournament and teams that are participating.

My proposed solution is appropriate to the tournament administrator because it intends to

automatically store the data for convenience and utilise network connectivity to easily cater

15

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

for adding and removing teams at any point. Tournament creation is an essential part of any

tournament program.

Fixture Generation: They will make use of my proposed solution by utilising the automatic

generate a schedule of matches for the tournament, ensuring fairness, balanced distribution

of home/away matches and therefore avoidance of conflicts. They may also expect the

flexibility to modify fixtures if necessary.

My proposed computational solution of using algorithms to generate the fixtures is

appropriate to the tournament administrator because it will do this quickly and automatically,

thereby saving the user the hassle of having to do this manually.

Match Management: They will make use of my proposed solution by managing individual

matches, including recording match results and updating live scores. Recording match

results is essential for any tournament. The remaining features may be interesting either for

entertainment, match reporting or to generate meaningful statistics.

My proposed solution is appropriate to the tournament administrator as I intend for the match

management to be quickly accessible via a link and after any scores are entered, the

standings are automatically updated without the user having to do anything.

Standings and Rankings: They will make use of my proposed solution by being able to

view the tournament standings, including team rankings, points and goal differences. They

would expect the program to automatically update the standings based on match results.

This is necessary to know the standing of each team.

My solution is appropriate for stakeholder needs because the standings are automatically

accessible and will also be easy to share with users via an accessible web link, making use

of storage and network connectivity.

Stakeholder expectations conclusion

These expectations can vary depending on the specific requirements and target audience of

the football tournament program. Providing a user-friendly interface, intuitive navigation, and

robust functionalities would be essential to meet these expectations effectively.

Justification of features that make it solvable by computational

methods

Algorithms can be used as following:

Generating the fixtures for the tournament, including scheduling matches between teams

so that teams play fairly play an equal number of matches. Matches can be distributed

evenly in relation to home and away matches. This could be developed to allow fixtures

based on preferences, travel distance, venue and team availability.

16

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Standings and Rankings: Maintaining and updating the tournament standings and rankings

based on match results. Sort and order teams based on points, goal differences, or other

tiebreaker rules. The standings can be dynamically updated as matches are played, allowing

real-time tracking of the tournament progress.

Network and storage

Sharing match results: Through using a client-server network model and storage

facilities, football match outcomes can be accessed anywhere with an internet connection.

Remote access and tournament updates can be handled via a client and web server.

Databases

Multiple tournaments: Many tournaments can be saved and accessed from a single

database server. Permissions can be set to allow for read or write access to restrict who

can update tournament results and who can only see them.

Decomposition

A tournament generator can be decomposed. The broadest elements are: Creating a

tournament, updating results, reading and displaying tournament data. These elements can

be further decomposed, for example updating a data structure and then sending it to a

server.

Design

Justification of usability features

Starting with the user interface before designing the code will make it easier for me to think

through the code required for the given user interface.

17

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Layout: The design will follow that for a traditional webpage as if it looks similar to other

websites then it should look familiar and be easy to use.

Accessibility: The design will follow ‘mobile-first’ principles to ensure usability with a wide

range of devices. The font size will be based on the browser’s default to ensure readability

(1em). Inaccessible options will be shown as being ‘disabled’ to prevent confusing the user.

The default tab-order will be used to aid keyboard-only navigation if using a mouse is not

possible.

Buttons will be big enough to ‘tap’ within a browser window.

Relevance: In ‘view only’ mode, the settings will not be visible as these settings only

concern the administration of the tournament, therefore will not cause confusion.

Navigation: The navigation links will either be underlined or presented in a familiar

navigation style so that the user knows they are clickable links. Anything that is inactive will

be presented accordingly.

Navigation grouping: The ‘create new tournament’ button will be top-right as this is not

associated with the tournament itself. Additional buttons to do with the tournament will

appear in a logical left to right order which determines the screen layout. Whilst ‘help’ is not

to do with the tournament itself, it will change the layout, hence it is positioned where it is.

Fonts and font size: The website will use ‘Arial’ as the default font as it is a font commonly

used and installed on all systems. Whilst additional fonts could be used to add interest, it will

add an additional loading overhead and for the purpose of this project is not required.

Clutter: To minimise ‘clutter’, the team boxes will appear or disappear as required.

18

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Help message: There will be a helpful help message to explain what to do.

Validation: The help message will change if there is an issue with validation, for example a

missing tournament name.

One click copy: A single click will copy the URL to the clipboard to save having to select the

URLs and then copy them. This makes it easier for the user to do - especially if using a

mobile device.

All pages follow a similar design to ensure consistency so that it is easy to use.

Error handling: A pop-up style message box will appear if errors occur, such as entering an

invalid score.

Validation: The match score input boxes will be limited to numeric input.

Tooltips: Whilst the letters should be familiar to those playing football, a helpful tooltip may

be included to show what the letters mean.

19

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Help screen: Ideally a video will be displayed here (embedded via YouTube for ease of

inclusion and compatibility) to walkthrough how the program is used.

The above will appear when the user enters the website via a ‘view’ or ‘admin’ link.

UI Approaches

Each page could have a different web page address e.g. /settings, /matches etc. However

this will mean reloading the page each time which adds to an overhead in loading content. I

intend to use asynchronous communication with the web server so that the entire page does

not have to be reloaded every time a score is entered or a different tournament button is

clicked (settings, matches etc).

For added consistency and compatibility, I could use a popular framework such as

Bootstrap. However I am unfamiliar with such frameworks so on this occasion I will not be

using a framework. This will keep the site ‘lightweight’ and loading quickly as it will not

incorporate the overhead of loading Bootstrap.

Program structure

The decomposition of the program will look as follows:

Tournament creation

This is the part of the program where tournaments can be created. The user will need to be

able to enter the name of the tournament, names of at least two teams. There needs to be

at least two teams for a tournament to exist. All data entered will need to be validated so

that it does not stop the code from working, the tournament from being displayed on screen

or result in a malicious SQL injection attack.

● Input data

○ Enter name of the tournament

○ Enter the names of at least two teams before allowing save

○ Delete a team if a team is removed (including from the match schedule)

20

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

○ Validate data (see validation section)

● Generate a match schedule

○ Data is created to allow each team to play any other (adding and removing

matches as teams are added/removed from the tournament)

● Save data to database

○ Validate data - check for malicious entry/data corruption.

○ Insert new record into the database or updating existing record

○ Return success/failure message

● Generate viewer and administrative URL which is unique to the tournament

○ Concatenate “view” or “admin” along with the ID created for the new/existing

record.

Match management

This Is the part of the program where match data is entered.

● Validate admin URL is valid

○ If invalid return a helpful error message

● (Get tournament standings)

● Select a team

○ Enter match result

○ Validate match result (both client and server)

○ Save match result back to database

■ Check the URL is an administrative link

■ Update the database

Tournament standings

● Validate view/admin URL is valid

● Get tournament data from database and send to client

● Render tournament standings in a table as a web page

The program has been decomposed into the sections as shown above which reflect the

desired functionality of the project. Each section aims to encapsulate key data and

functionality in order to keep the code modular. This will aid development and testing.

Key variables, data structures, classes as appropriate

I anticipate using JSON (Javascript object notation) to represent the tournament data. This is

to maximise the data portability and robustness of the data. Unlike formats such as XML, it

is native to Javascript, has a strictly defined format and doesn’t suffer from verboseness.

Whilst there are several ways of formatting variable names such as snake_case and camel

casing, I have used camel casing because this is industry standard for the languages that I

am using.

The following format can be used to store the tournament data and allows for flexibility as

additional data could be added at a later stage:

21

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Key Classes: Client

I have designed this Javascript class to run client-side alongside designing algorithms for

this project:

Class name Description

Tournament All methods and attributes for the tournament app

Attributes Description

tournament JSON data structure that includes all tournament data
that is all together rather than having multiple variables.

adminMode: bool Whether or not the app is running in administrative
mode

Methods Description

constructor() Class constructor to create default values for class
attributes

processURL() Depending on the URL, either load the tournament or
show a new tournament

createNewTournament() Create a new tournament

createDefaultTournament() Create JSON data structure for new tournament data

loadTournament(id:integer,
viewKey:string,
adminKey:string)

Load a tournament from the server

gotTournament(result:object) Process the tournament data returned from the server

nameTournament(name) Check the name is valid and then proceed to save the
tournament back to the server

saveTournament() Save the tournament data to the server

gotSavedTournament(result:obj
ect)

Display any error(s) that may have occurred whilst
attempting to save the tournament or a confirmation
message.

Update the interface with any data generated by the
server (e.g. the URL to view/administer the tournament)

setTeam(number, name) Allow teams to be added/removed from the tournament.

generateMatches() Generates matches for each team in the tournament.

deleteMatches(teamNo:number

)

Deletes matches for the given team number from the
tournament - this will happen if a team is removed from
the tournament.

22

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

showMatches() Shows the match schedule from the tournament data

getTeamName(teamNo:integer

):string

Returns the team name for a given team number - this
is so that team names can be renamed without having
to change multiple occurrences.

showStanding() Show the standing for the tournament - first by
calculating points, goal difference etc, calling a method
to sort the team data by total points in descending order
and then outputting to the screen

sortTeamsBy(attribute:string,as

cending:Bool)

Sort the tournament teams data by the specified
attribute and either in ascending or descending order

updateMatchScore(matchNo:int

eger, goals:integer,

where:String)

Updates the number of goals scored for a given match.
‘Where’ is either ‘home’ or ‘away’.

getNumberOfGoals(goals:integ

er):integer

Makes sure that the number of goals looks reasonable
and either ends up being an integer or null (and
definitely not ‘not a number’)

showTournamentURLs() Display the URLs used to access the tournament.

showTournamentTeams() Generate input boxes for teams in the tournament after
the tournament is loaded (in alphabetical order)

showScreen(name:string) Shows the name of the specified ‘screen’ within the web
app, e.g. ‘settings’, ‘matches’, ‘help’ etc.

setupScreen(name:string) This will make sure that the screen is showing the
correct data, e.g. “settings” needs to show team names,
matches needs to show the matches etc generated from
the ‘tournaments’ data structure.

Key functions: server

Function Description

(main) Import database library to interface with a MySQL database

Respond to requests from clients - either to load a tournament
or save a tournament.

saveTournament Updates an existing tournament or saves a new tournament. If
saving a new tournament then it needs to add a new adminKey
and viewKey so that it is only accessible to those with the
relevant key. Any errors need to be captured and a relevant
error message sent back to the client.

isTournamentValid A method to make sure that the tournament data is valid,
without which it would be possible to save invalid data to the
database (e.g. caused by a malformed request, malicious user

23

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

etc)

loadTournament Process a request to load a tournament. Check that the
relevant admin or view key is valid - returning either the
tournament data or an error message.

exitError($message) An error message to return to the client

outJSON Create an object with which to return data to the client. As it is
an object it can be added to in the future if needs be.

generateKey A function for creating an adminKey and viewKey for the
tournament.

Key Data Structures

tournament = {

 name: "Demo Tournament",

 teams: [{

 number: 0,

 name: "Team A"

 }, {

 number: 1,

 name: "Team B"

 }, {

 number: 2,

 name: "Team C"

 },],

 matches: [{

 home: 1,

 away: 2,

 homeGoals: 1,

 awayGoals: 1

 },

 {

 home: 1,

 away: 3,

 homeGoals: 1,

 awayGoals: 1

 },

 {

 home: 3,

 away: 2,

 homeGoals: null,

 awayGoals: null

 }

]

}

24

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

If teams are identified by a number then the team name can be easily changed (i.e. without

the team number then team names in the matches would have to be updated every time a

team was renamed)

Database structure

Table: tournaments

Field Attributes Comment

TournamentId Integer, auto-increment,
primary key

Uniquely identifies a tournament

tournament Text
Encoding: UFT-8

The tournament JSON data will be stored
as text for ease of access and storage.
The encoding will be UFT-8 for
compatibility with Unicode to maximise
the number of characters that are
available to use.

viewKey char(20) A ‘pass key’ required to be able to view
the tournament data

adminKey char(20) A ‘pass key’ required to be able to update
the JSON data with match scores

isDeleted Bool. Default: 0 A Boolean flag to indicate whether or not
the tournament has been deleted (This
allows tournaments to be ‘undeleted’ if
necessary.)

dateCreated Datetime. Default:
current_timestamp

This may be useful metadata - it has
been added for flexibility as it could be
used at a later date.

dateLastAccessed Datetime. Default:
current_timestamp

Storing the date will allow for
maintenance code to permanently delete
tournaments that have not been
accessed for a while to save on storage
space.

As the tournament data is being directly written to the database and statistics are not being

performed via SQL (e.g. counting the number of goals any one team has scored), it need not

be split into multiple tables.

Key Variables

There are no key variables as all key data is encapsulated within the tournament data

structure. This has already been illustrated.

25

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Validation required and test data to use during development

I will need to incorporate the following validation into the code:

Client-side

Validation
description

Validation
rule(s)

Test data Expected result Reason for test data and validation

Tournament
Generation:
Tournament
name

Presence [blank]

Demo Tournament

Suitable errormessage

Accepted

The test data tests all possible and
likely inputs.

It makes sense for tournaments to
have a name so they can be easily
identified. There is no point in saving
a tournament without a name.

Tournament
Generation:
Team name

Presence

Unique

[blank]

Eagles
Eagles

Eagles
Lions
Giants

Suitable errormessage

Suitable error message
for duplicates

Multiple names, try a
total of 8 teams

The test data tests all possible and
likely inputs. It accounts for possible
accidental duplication of the same
team.

Teams should have a name and
should be unique (i.e. do not already
exist within the tournament or it
would get confusing if multiple teams
had the same team name.

Tournament
Generation:
Save
tournament

Fixture
generation
(Check
tournament is
generated
correctly)

Sufficient data Missing tournament
name

Missing team name

Tournament name
but no team names

No tournament name
but team names

Tournament name
and one team name

Tournament name
and 2+ team names

Suitable error message
in all cases except when
a tournament name and
2+ teams are specified.

Where a tournament is
created, check that the
tournament is generated
correctly.

There should be at least two teams
and a tournament name for a
tournament to be saved otherwise
there is no point in wasting storage
space with incomplete tournament
data.

The suggested test data includes a
combination of all possible values.

Match
management:
Goals score

Type

Range

Verification

A

99

-3

1

2

(i.e. a mixture of
boundary, invalid and
erroneous data)

 The test data tests all possible and
likely inputs. Ultimately this can be a
‘closed’ input that only allows 0 or
above to be entered.

A score may be blank (null) to
indicate that the match has not been
played, otherwise it should be a
positive integer.

Verification can avoid errors such as
typing in 55 goals instead of 5, but
could be annoying to the user - so
alternatively display a warning
message if the goal count looks too
high.

Prevent negative integers from being
entered as one cannot score a
negative number of goals.

26

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Server-side

Validation
description

Validation rule(s) Test data Expected result Reason for test data and validation

Match
management
Tournament
data structure
integrity

Check the
expected key pairs
exist and contain
valid data types

An invalid JSON
document

Valid keys but
invalid pairs

Valid JSON
document

Error messages
in all cases
except for a valid
document.

Testing invalid document data will test
the robustness of the server.

Prevent writing invalid data to the server
as a result of a malicious user which
could cause abnormal operations.

Match
management/
Tournament
standings
View/admin
URL

Check the
view/admin URL is
valid by comparing
it to the random
adminCode or
viewCode
generated in the
tournament data

Attempt to forge
an adminCode
and viewCode

Use a valid
adminCode/view
Code

Error message
unless valid
admin/viewCode
is specified.

Prevent unauthorised access to data.

Without suitable validation it may be possible to gain unauthorised access to tournaments

and to also inject invalid or malicious data into a tournament.

Algorithm design

I have drafted the following code before attempting to write any actual code.

Client-side

I intend to use an Object Oriented Programming approach. This is not because I need

multiple instances of anything at this stage but it allows for flexibility for adding/removing

features at a later stage and for clearly defining methods and attributes.

$(document).ready(function() {

 tournament = new Tournament()

})

^I intend to use JQUERY so that I only need one universal line of code to be able to

know when the document has loaded, at which point a new ‘instance’ of the app can

be created. This should not be done until the main HTML has been loaded otherwise

the app may try to modify HTML content that has not been loaded resulting in a

malformed interface.

From the URL, to know which part of the ‘app’ to show. If the tournamentId is

specified then this will need to trigger loading a tournament.

Example URL would be domain.com?tournamentId=1,viewKey=abc,adminKey=def

class Tournament {

constructor() {

 this.createDefaultTournament() //create default tournament data.

 }

27

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

A class needs a constructor, with which default data for the tournament will be

created.

createDefaultTournament() {

 this.tournament = {name:”Tournament Name”, teams:[], matches:[],

viewKey:””, adminKey:””} //viewCode/adminCode used to generate viewer and admin

URLs.

}

Tournament data to be stored in a JSON data structure for reasons already outlined

(consistency, data is held together, compatibility, robustness). If I used discrete

variables instead it would make the code much longer.

processURL() {

url = windowHref

 If tournamentId!=null {

this.loadTournament(url.tournamentId, urlObj.viewKey,

urlObj.adminKey)

} else {

showScreen(‘settings’)

}

}

A different ‘part’ of the web app needs to be displayed depending on the URL

specified. As already discussed, the app could be made using discreet web pages

but I’ve decided to put all parts of the app together to maximise load speed and so

that the web page does not have to entirely redraw itself.

 createNewTournament() {

 this.createDefaultTournament();

 this.showScreen(‘settings’)

}

A function to enable the creation of a brand new tournament which may be called

after an existing tournament has been loaded.

loadTournament(id, viewKey, adminKey) {

 showScreen(‘loading’)

 Post “load” to server with viewKey and adminKey then gotTournament

}

Use asynchronous communication to load tournament data from the server - for the

same reason as given above.

gotTournament(result) {

 if(result.error) {

 Show error

28

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

} else {

 this.tournament = result.data

this.adminMode = (this.tournament.adminKey!=’’)

if(this.adminMode) {

this.showScreen(“Settings”)

} else {

 this.showScreen(‘Matches’)

}

}

}

Data from the server needs to be processed. If an error occurs then it needs to be

displayed - the method for doing so will be finalised during development. Data will

need to be deserialized into a Javascript object otherwise the data will be text instead

of a navigable data object.

 nameTournament(name) {

 If (name!=””) {

 this.tournament.name = name

 this.saveTournament()

} else {

 Show message (“Your tournament name is missing!”)

}

}

Validate the given tournament name and then save it.

saveTournament() {

//it only makes sense to save a tournament once team(s) have been created

If tournament.teams.length >= 2 then

Post tournament data to server then gotSavedTournament

else

 Show message (“Tournament will not be saved until there is at least

two teams”)

End if

}

Save the tournament. Include validation to prevent saving tournaments that do not

have a team name.

gotSavedTournament(result) {

 Show message “Tournament data saved.”

 this.tournament = result->data

}

Update screen messages so that the user is aware that data has been saved.

setTeam(team number, name) {

29

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 If (name==””) {

 Delete team and remove input box

 this.deleteMatches(input box teamNo)

} If (name in existing teams) {

Show message (“Team name already exists!”)

} else {

Tournament.teams = []

For each team inputbox {

tournament.teams.append({number:input team number,

name:input name})

}

 Append additional input box and set focus to it for entering the next

team

}

this.generateMatches()

this.saveTournament()

}

Add or remove team(s) from the tournament. Each team is given an incremental

number to identify the team.

generateMatches() {

If there are less than two teams then {

 showMessage(“there needs to be at least 2 teams”)

return

}

 //generate matches so each team plays every other team. This could be

done on the server but may be quicker for the client to do it.

 matchNo = 0

otherTeam = 1

teamCount = this.tournament.teams.length

 For thisNo=0;thisNo<teamCount;thisNo++ {

 for (otherNo=otherTeam , otherNo<teamCount);otherNo++) {

 //alternate who plays at “home” or who plays “away”

 If matchNo % 2 == 0 {

 homeNo = thisNo

 awayNo = otherNo

} else {

 homeNo = otherNo

 awayNo = thisNo

}

if(this.tournament.length < matchNo) {

this.tournament.matches.append({home:homeNo, away: away,

homeGoals:null, awayGoals:null})

}

matchNo +=1

 }

30

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

otherTeam+=1

}

}

This algorithm ensures that each team plays every other and that it alternates

between which team plays at ‘home’ and ‘away. It uses a nested loop to generate a

match schedule that should look like this:

Team A B C D

A n/a AvB CvA AvD

B n/a n/a BvC DvB

C n/a n/a n/a CvD

D n/a n/a n/a n/a

An alternative would be to use an algorithm to randomise which team plays which

other team, but this would not meet the expectations of the user for each team to play

every other in a systematic fashion, hence why using a nested loop is a sound

solution for generating matches.

The variable ‘thisNo’ refers to the team in the ‘column’ and ‘otherNo’ refers to the

team in the row. Modulo 2 will be used to alternate between ‘home’ and ‘away’.

deleteMatches(teamNo) {

 For match in tournament.matches {

 If (match.homeNo==teamNo or match.awayNo==teamNo) {

 Remove match

}

}

}

Remove a match from the schedule. When it comes to implementation it will need to

loop backwards through the loop otherwise it will not work.

showMatches() {

 //view all matches played/to be played

 table = ‘<table><tr><th>Home</th><th>Away</th><th

colspan=’2’>score</th><tr>’

For match in matches {

 Add table row with getTeamName and editable (in admin mode)

scores

}

Table += ‘</table>’

31

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

$(‘.standings’).html(table)

}

A method to show matches so users know who has/hasn’t played. It will include the

ability in admin mode to adjust the scores.

getTeamName(teamNo) {

 For team in tournament.teams {

 If team.number == teamNo then return team.name

}

return “not found” //this should technically not happen.

}

Given a team number it will return its name. The idea being that it is possible to

rename a team within the data just once. Each team number will be unique and occur

multiple times.

showStanding() {

 //Generate a table to show team standings

// generate the point data from the match results…

 otherTeam= 1

 teamCount = this.teams.length

 For (thisNo=0;thisNo<teamCount;thisNo++) {

 Team = tournament.teams[thisNo]

team.played=0, team.won=0,

team.draws=0,team.losses=0,team.gamesPlayed=0,team.goalsFor=0,team.g

oalsAgainst=0,team.goalDifference=0,team.points=0

 for (otherNo=otherTeam, otherNo<teamCount);otherNo++) {

 match=matches[matchNo]

matchNo +=1

 If match.homeGoals != null {

 gamesPlayed+=1

 goalsFor+=homeGoals

 goalsAgainst+=goalsAgainst

 If homeGoals>awayGoals {

 team.wins+=1

 team.points+=3

} else if (awayGoals>homeGoals) {

 team.losses+=1

} else {

 team.draws+=1

 team.points+=1

}

}

team.goalDifference = team.goalsFor-team.goalsAgainst

32

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 }

 sortTeamsBy(‘points’, false)

otherTeam+=1

}

Table = ‘<table><tr><th>#</th><th>Team Name</th> etc…

For team in teams {

 Show match outcome as a table row

}

}

This algorithm will work in a similar way to the match generation algorithm except this

time it will output the match outcomes.

sortTeamsBy(key, isAscending) {

 //use a custom sort function that’ll look something like this to sort the teams

by a key, e.g. number of points scored.

 tournament.teams.sort(function(a, b) {

 if(isAscending) {

Return a[key] > b[key];

} Else {

Return a[key] < b[key];

}

})

}

This method makes use of a custom sorting function to sort object data by the

specified attribute. The method has been written for flexibility so it can sort teams by

name or points.

updateMatchScore(matchNo, goals, where) {

//homeGoals can be limited to numbers only through the ‘type’ attribute.

 Check that homeGoals, awayGoals look ‘reasonable’.

goals = getNumberOfGoals(goals)

 this.tournament.matches[matchNumber)[where + ‘Goals’] = goals

 this.saveTournament()

}

Given a match number, the score for the match will be updated. It will be important for

the data to be valid - JSON has null values but not NaN (not a number) values so any

blank values need to be set to null and not NaN - hence the method below.

getNumberOfGoals(goals) {

 Goals = int(goals)

 If isNaN(goals) return null

33

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 If goals > 6 {

 Show message (“The goal score seems high - double check the

result”)

}

If goals < 0 {

 Show message (“Goal score cannot be less than 0! It has been set to

0”)

Return 0

}

Return goals

}

A function to check the number of goals - returning either null or the number of goals

accordingly, and an error message if the number of goals looks too high.

showTournamentURLs() {

 $(‘.urlViewOnly’).text = window.href + “?viewKey=” + tournament.viewKey

$(‘.urlAdminOnly’).text = $(‘.urlViewOnly’).txt + “&” tournament.adminKey

}

Display the URLs used to access the tournament.

showTournamentTeams() {

sortTeamsBy(‘name’’, true)

For each tournament.teams {

 Create input box on the settings page for each team with number data

and team name

}

}

showScreen(name) {

 show/hide relevant HTML for each ‘part’ of the program, e.g. tournament

settings, view matches, view standings etc.

$(body).find(‘.screen’’).hide();

if(name!=””) $(body).find(‘.’+name).show()

this.setupScreen(name)

}

Displays the relevant part of the web app so the user can focus on the relevant part of

the tournament.

setupScreen(name) {

if(!this.adminMode) {

 $(‘.btnSettings’).hide()

} else {

 $(‘.btnSettings’).show()

}

34

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

if(name == ‘settings’) {

showTournamentURLs()

showTournamentTeams();

} else if name==’matches’) {

 showMatches()

} else if name==standing’) {

 showStanding()

}

}

Set up the screen - processing the tournament data and displaying it in a usable

format.

}

An HTML document will need to be created with relevant inputs and ‘onchange’ events to

call the relevant method of the class detailed above.

Server-side algorithms

Import dbfunctions.php //a library for interfacing with a MySQL database.

Connect to database

action = $_POST[‘action’] //either ‘load’ or ‘save’ tournament data.

if($action==”save”) {

 saveTournament();

} else if ($action==”load’) {

 loadTournament()

}

exit()

It makes sense to use an existing library to access a database rather than reinvent the

wheel on this occasion. The library includes a way of using prepared SQL statements

which prevents SQL injection attacks.

This algorithm gets the ‘action’ posted to the server-side script and responds to it

accordingly.

Function saveTournament() {

$tournament = $_POST[‘tournament’];

$tournamentId = $_POST[‘tournamentId’]

Try {

 //convert the JSON tournament data into a PHP data structure

if(!isTournamentValid($tournament)) exitError(“Invalid tournament data”)

35

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

$adminKey =$tournament->adminKey;

if($adminKey==””) {

//save new tournament

$tournament->adminKey = generateKey()

$tournament->viewKey = generateKey()

$dbPrepareQuery(“INSERT into tournaments(tournament)

VALUES(?), array($tournament));

$tournament->Id = dbLastId();

} else {

 $tournament=getTournament(“admin”,$tournamentId, $adminKey)

 //update existing tournament

 $dbPrepareQuery(“UPDATE tournaments SET tournament=? WHERE

tournamentId=?”, array($tournamentId))

}

//send tournament data back so any update(s) if made on the server side are

reflected in the client:

outJSON($tournament);

} catch (error $e) {

 exitError(“Invalid tournament data”)

}

}

I have designed this algorithm to include a try-catch to be able to help debug potential

errors and for the code to gracefully exit if an error occurs.

The algorithm includes a call to a method to check that the tournament data is valid -

without which it would be possible to write invalid data to the database causing the

program to malfunction.

The algorithm reads posted data and then either creates a new tournament or updates

an existing tournament. I could technically use a single INSERT SQL statement along

with ON DUPLICATE RECORD UPDATE but have chosen not to for the sake of clarity.

The tournament data is sent back to the client. Arguably it only needs to send back

any admin/view key generated but for the time being it is much easier to send back all

tournament data.

Function loadTournament() {

 $viewKey = $_POST[‘viewKey’]

$tournamentId = $_POST[‘tournamentId’]

$adminKey = $_POST[‘adminKey’]

$mode = ($adminKey!=’’) : “admin” ? “view”;

$r = dbPrepareSelect(“SELECT tournament FROM tournaments WHERE”.

$mode.”Key=? AND tournamentId=? AND isDeleted=0”, array($key, $tournamentId))

36

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 if($r==null) return null

 dbPrepareQuery(“UPDATE tournament SET lastAccessed=NOW() WHERE

tournamentId=?”, array($tournament[‘tournamentId’]))

if($tournament==null) exitError(“Tournament does not exist”)

 outJSON($recordset[“tournament”]

}

This code has been written to load a tournament from the database. It will only

succeed in doing so if the relevant key is correct, otherwise it will output an error

message instead.

To know if a JSON document is valid insofar as only containing permitted keys and the

correct data type for each key, then it makes sense to recursively compare the JSON

document to a template.

E.g.

$template =$template = '{

 "name": {

 "allowed": ["string"]},

 "teams": {

 "allowed": ["array"],

 "template": {

 "number": {

 "allowed": ["integer"]

 },

 "name": {

 "allowed": ["string"]

 }

 }

 },

 "matches": {

 "allowed": ["array"],

 "template": {

 "home": {

 "allowed": ["integer"]

 },

 "away": {

 "allowed": ["integer"]

 },

 "homeGoals": {

 "allowed": ["integer", "NULL"]

 },

 "awayGoals": {

 "allowed": ["integer", "NULL"]

 }

 }

37

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 }

}';

Some value will be allowed to be either of a specified data type or a null value, hence why

the ‘allowed’ key is set to an array of one or more values.

Function isItValid($original, $template) {

 If the type of the original is an array {

 For each array item {

 Return isItValid(item, template)

 } else {

 For each original as key>value {

 //see if the key exists in the template:

 If the key doesn’t exist in the template {

 exitError(key not found)

 Return false

 }

 //check the value of the key is valid

 If the value data type is not in the template’s ‘allowed’ list {

 exiterror(unexpected data type)

 {

 If the value type is an array {

 //recursive call…

 Return isItValid(value, template’s template)

 }

}

}

Return true

}

The above code will eventually validate the entire JSON tournament data structure to

ensure the expected keys are present and the key values are also valid.

Function exitError($message) {

 $out = new stdclass();

 $out->error = $errorMsg;

 outJSON($out);

 exit();

}

This reusable function is used to output an error message should an error occur.

Function outJSON($text) {

38

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 $out = new stdclass();

$out->data = $json;

echo json_encode($out);

}

This function is used to encode data as a JSON object before it gets outputted,

without which Javascript will not be able to correctly interpret the data. In the final

version I will include UFT-8 encoding so that the program will work with the relevant

data set.

Function generateKey() {

$codeAlphabet =

"abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 $key = "";

 $max = strlen($codeAlphabet);

 for ($i=0; $i < $length; $i++) {

 $key .= $codeAlphabet[mt_rand(0, $max-1)];

 }

 return $key;

}

This function has been written to generate a random key that will be used to allow

admin and view access to the tournament data to protect data from unauthorised

access.

Post development test data

Test Explanation Justification

I will send invalid data to the server and

check that it can be handled so that the

program does not crash.

To ensure usability, and stability and
invalid data does not get put into the
database.

 I will randomly generate 1,000 tournaments

and check that anyone can be accessed.

To see if the project can handle a large
number of tournaments.

Upload the site to the Internet for anyone to

access

Monitor its performance to see if it works at
scale.

Enter invalid tournament names and team

names

Check that the program is error resilient
and displays graceful error messages.

Use the site in a variety of browsers (Edge,

Chrome, Opera)

Ensure compatibility between devices.

Usability from HD to UHD resolutions on

both mobile and desktop

Check the site is usable in a number of
screen formats and devices

39

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Ask people about their experiences of using

the web app

Get feedback concerning the usability of
the web site.

If time allowed one would also add additional code and tests to help prevent the server from

getting ‘spammed’, for example by temporarily blocking access from IP addresses that

repeatedly make invalid requests or send invalid data. One could also add security

measures such as single sign-in via Google to prevent unauthorised access to tournament

data.

Development & Testing

User Interface

This project requires a user-friendly web interface so I have started with the HTML:

<!doctype html>

<html>

<head>

<title>Tournament Generator Project</title>

<script src="tournament.js"></script>

</head>

<body>

<div class='container'>

<div class='titleBar'>

<div class='logo'>Football Generator Project</div>

<div class='titleBarLink' onclick='tournament.createNewTournament()'>Create a new tournament</div>

</div>

<div class='tourName'><input id='txtTournamentName' type="text" placeholder="Enter tournament name"

/></div>

<div class='navigation'>

<button class='navButton selected'>Settings</button>

<button class='navButton'>Matches</button>

<button class='navButton'>Standing</button>

<button class='navButton'>Help</button>

</div>

<div class='screen' id='screenSettings'>

<div class='helpMessage'>Access web site addresses will be created after you have entered a

tournament name (above) and teams (below).</div>

<h1>Team Entry</h1>

<div class='teams'>

<input type='text' placeholder="Enter team name" data-number="0">

</div>

<h1>Access Web site addresses</h1>

<div class='accessURLs'>

View:

<div id='viewURL'>https://view url here</div>

Admin:

<div id='adminURL'>https://admin url here</div>

</div>

</div>

<div class='screen' id='screenMatches'>

<table id='tblMatches'>

<tr><td>Eagles</td><td><input type='number' value='3'></td><td>-</td><td><input type='number'

value='1'></td><td>Falcons</td></tr>

</table>

</div>

<div class='screen' id='screenStanding'>

40

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

<div class='helpMessage'>Error or help message to appear here.</div>

<table id='tblStanding'>

<tr><th>#</th><th>Team</th>

<th title="Played" alt='Played'>P</th>

<th title="Played" alt='Won'>W</th>

<th title="Played" alt='Draws'>D</th>

<th title="Played" alt='Losses'>L</th>

<th title="Played" alt='Points for'>F</th>

<th title="Played" alt='Points against'>A</th>

<th title="Played" alt='Goal difference'>+/-</th>

<th title="Played" alt='Points'>PTS</th>

</tr>

</table>

</div>

<div class='screen' id='screenHelp'>

<h1>Help!</h1>

<p>Video or text to go here</p>

</div>

<div class='screen' id='screenLoading'>

<div class='helpMessage'>Loading screen - error or help message to appear here.</div>

</div>

<div class='footer'>©2023 A. Student</div>

</div>

</body>

</html>

To improve the aesthetics, I added some basic CSS by including the following line:

<link rel="stylesheet" href="tournament.css">

And CSS:

* {box-sizing: border-box;}

 html {font-family:arial;font-size:1em;}

 body {margin:0;padding:0;}

 .container {

 margin:0 auto;

 width:100%;

 max-width:1500px;

 text-align:center;

 }

 .titleBar {

 width:100%;

 height:35px;

 background-color:black;

 color:white;

 padding:10px;

 }

 .logo {

 float:left;

 text-align:left;

 display:inline-block;

 font-weight:bold;

 }

 .titleBarLink {

 display:inline-block;

 float:right;

 text-decoration:underline;

 user-select: none;

 }

 .titleBarLink:hover {

 background-color:grey;

 cursor:pointer;

41

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 }

 .tourName input {

 width:100%;

 font-size: 2rem;

 font-weight:bold;

 text-align:center;

 }

 .navigation {text-align:center;}

 .navButton {

 display: inline-block;

 vertical-align:middle;

 padding:10px;

 margin: 10px;

 text-align:center;

 border:0px;

 user-select: none;

 font-size:1.2rem;

 font-weight:bold;

 color:white;

 cursor:pointer;

 background-color: black;

 outline:none;

 box-shadow: inset 0px 0px 5px #c1c1c1;

 }

 .navButton.selected {}

 .navButton.inactive {cursor:not-allowed;opacity: 0.6;}

 .navButton.active {box-shadow: 0 4px #999;}

 .navButton.active:hover {

 background-color: #555;

 box-shadow: 0 2px #333;

 transform: translateY(2px);

 }

 .teams input {text-align:center;}

 .screen {padding:20px;border: 1px solid;}

 .helpMessage {margin: 10px;}

 #tblStanding, #tblMatches {

 margin:0 auto;

 width:100%;

 max-width:1000px;

 }

 #tblMatches input {

 width:2em;

 text-align:center;

 }

 .footer {margin-top:10px;font-size:0.8rem;color:#999;}

Prototype Outcome Before:

42

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Prototype Outcome After:

Review: The interface is clean as it uses contrasting colours and a contrasting colour

palette. The content is spaced out and easy to read. As the project progresses it could be

themed to look more like the kind of league tables one might expect to see on the television

or a football game to make it look more modern.

Responding to a generated user URL and creating a tournament

After adding code to link to JQuery (<script src="jquery-3.6.0.min.js"></script>), I started

creating the tournament class and methods in a javascript file to meet the functional

requirement of being able create a tournament. It was created in a separate document to

keep it away from the HTML itself - aiding maintenance and accessibility.

43

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

$(document).ready(function() {

 newTournament()

})

function newTournament() {

 var tournament = new Tournament()

 tournament.processURL()

}

class Tournament {

processURL() { //process the URL so users can load a tournament via a URL

 let url = new URL(window.location.href); //get the URL as an object

 console.log(url) //test it works

 let tournamentId =url.searchParams.get('tournamentId'); //get the tournament ID

 if (tournamentId != null) { //if it is specified then attempt to load the

tournament:

 this.loadTournament(tournamentId, url.searchParams.get('viewKey'),

url.searchParams.get('adminKey'))

 } // Slightly different from my design, I have added a clause to create a new

tournament if a tournamentId is not specified in the URL.

 else {

 this.createNewTournament()

}

 }

loadTournament(id, viewKey, adminKey) {

 console.log('load tournament ' + id)

 console.log(viewKey)

 console.log(adminKey)

 }

 createNewTournament() {

 this.createDefaultTournament();

 this.showScreen("Settings")

 }

 createDefaultTournament() {

 this.tournament = {name:"Tournament Name", teams:[], matches:[], viewKey:"",

adminKey:""}

 console.log(this.tournament)

 }

}

Testing:

At present the tournament cannot be loaded but I can test to see if it works by changing the

URL in the web browser:

index.html

When no parameters are specified, a default tournament object is successfully created.

index.html?tournamentId=1&viewKey=abc&adminKey=def

44

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

When parameters are specified, each parameter is successfully extracted using the URL

object.

Review: Everything is functioning as expected. I will continue implementing the project in the

logical order of the algorithm design.

Loading a tournament from a database server

Lots of work will need to be done in this section to meet the functional requirement of being

able to view a tournament, e.g. a javascript request to the server, server-side script to load a

tournament, database creation and table creation.

The loadTournament method has been written:

loadTournament(id, viewKey, adminKey) {

 /*console.log('load tournament ' + id)

 console.log(viewKey)

 console.log(adminKey)*/

 showScreen('Loading');

 doPost({action:'load', tournamentId:id, viewKey:viewKey, adminKey:adminKey},

this.gotLoadTournament);

 }

And also a doPost function:

function doPost(data, successCallback) {

 //reference: https://api.jquery.com/jquery.post/

 $.post({url:"tournament.php", data:data, done: function (data) {

 console.log(data)

 try {

 let result = jQuery.parseJSON(data); //convert result from text to a JSON

object

 if (result.error!=undefined) { //check to see if the server returned an

error...

 $('.helpMessage').text(result.error) //show the error

 } else {

 successCallback(result.data) // call the callback and send the data

returned by the server

 }

 } catch (e) { //what happens if the server does not respond - either is offline or

error occurred.

 $('.helpMessage').text("The server did not respond or an error occurred on

the server. Check your internet connection and try again."})

 }

 },

 fail: function() {

 $('.helpMessage').text("The server did not respond. Check your internet connection

and try again."})

 }}

}

The aim is to load the tournament asynchronously thereby the entire webpage does not

need to be reloaded which speeds up response times. There is a general ‘try’ and ‘catch’

45

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

with the aim of catching any general connectivity issues. There is code to handle errors

generated by the server.

Review: The client-side script looks fine but it can only be fully tested once the

corresponding server-side script has been written to respond to the client request. The

client-side code includes error handling which helps to make the project robust.

Creating the database

I can’t load data until data exists in a database.

Using SQLYog I’ve created a database using the UTF8 character set so that the site can

theoretically be used with any unicode-supported language:

Table tournaments created as per the design:

I created a tournament record with the following JSON test data that has been tested and

validated with https://jsonlint.com/ so that I know the syntax is correct:

{"name":"Demontournament","teams":[{"number":0,"name":"Eagles"},{"number":1,"name":"Dolphins"},{"num

ber":2,"name":"Lions"},{"number":3,"name":"Falcons"}],"matches":[{"home":0,"away":1,"homeGoals":1,"a

wayGoals":1},{"home":2,"away":0,"homeGoals":2,"awayGoals":1},{"home":0,"away":3,"homeGoals":null,"aw

ayGoals":null},{"home":2,"away":1,"homeGoals":null,"awayGoals":null},{"home":1,"away":3,"homeGoals":

null,"awayGoals":null},{"home":3,"away":2,"homeGoals":null,"awayGoals":null}],"viewKey":"abcdefghijk

lmnopqrst","adminKey":"abcdefghijklmnopqrst"}

Changes from the design and justification:

46

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

- I will remove the viewKey and adminKey from the tournament data itself as it is

redundant because this data is within the database record itself. The code from the

design will need to be changed accordingly.

Whilst it is possible to read it from the tournamentId field, I want all the data to be self-

contained within the JSON object too for ease of transmitting and reading to and from the

client.

The following was written in PHP:

<?php

include "dbFunctions.php"; // a database library that has been provided.

try {

 //see what the client wants to do...

 $action = getRequest("action");

 if($action=="save") {

 saveTournament();

 } else if ($action=="load") {

 loadTournament();

 } else {

 exitError("Nothing to do");

 }

} catch (Exception $e) {

 //show error

 exitError($e->getMessage());

}

exit();

function getRequest($index) {

 //check that the data was sent to the script and if not then show a suitable error message.

 if(!isset($_REQUEST[$index])) exitError($index." not defined.");

 return $_REQUEST[$index];

}

function loadTournament() {

 //get data sent:

 $tournamentId = getRequest("tournamentId");

 $viewKey = getRequest("viewKey");

 $adminKey = getRequest("adminKey");

 $mode = ($adminKey!="") ? "admin" : "view"; //set the mode (admin or view)

 $key = ($mode=="admin") ? $adminKey : $viewKey; //set key according to mode

 //select the tournament record from the database (query)

 $query = "SELECT * FROM tournaments WHERE ".$mode."Key=? AND tournamentId=? AND

isDeleted=0";

 //prepared statement so no SQL injection attack is possible:

 $row = dbPrepareSelectRow($query, array($key, $tournamentId));

 if($row==null) exitError("No such tournament exists :-("); //record not found.

 //add the key and tournament ID to the tournament JSON data:

 $tournament = json_decode($row['tournament']);

 $tournament->viewKey = $row["viewKey"];

 $tournament->tournamentId = $row["tournamentId"];

 if($mode=="admin") $tournament->adminKey = $row["adminKey"];

 //update when the tournament was last accessed

 dbPrepareQuery("UPDATE tournaments SET dateLastAccessed=NOW() WHERE tournamentId=?",

array($row["tournamentId"]));

 //output the data for the client to receive.

 outJSON($tournament);

47

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

}

function saveTournament() {}

function outJSON($json) { //reusable function to output the data to the client

 header('Content-Type: text/html; charset=utf-8'); //set UTF-8 header for unicode

compatibility.

 $out = new stdclass();

 if(gettype($json)=='string') { //if the data happens to be a string then decode it.

 $out->data = json_decode($json);

 } else {

 $out->data = $json;

 }

 //output the data

 echo json_encode($out);

}

function exitError($errorMessage) { //reusable function to output and error message and quit the

script.

 $out = new stdclass();

 $out->error = $errorMessage;

 outJSON($out);

 exit();

}

?>

?>

Further changes from the design and justifications:

- $_POST is replaced with $_REQUEST so the script can be tested via HTTP GET as

well as POST methods.

- A function was added: “getRequest” because if the index specified for the request

does not exist then the program will cause an ungraceful response.

Testing:

The following tests check that the script handles missing, invalid and valid parameters and

responds with an appropriate error message.

Data: no parameters

Data: invalid action

Data: Valid action but missing tournament data:

48

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Data: Valid action, missing key

Before:

Data: valid action, valid viewKey, missing adminKey:

This is not ideal as the user should be able to specify a view key without specifying a blank

admin key.

After:

I changed the request function to include an optional parameter to control whether the script

exits if the variable is not found, otherwise it returns a blank string.

function getRequest($index, $exitIfNotFound=true) {

 //check that the data was sent to the script and if not then show a suitable error message.

 if(!isset($_REQUEST[$index])) {

 if($exitIfNotFound) {

 exitError($index." not defined.");

 } else {

 return "";

 }

 }

 return $_REQUEST[$index];

}

The call to the function now looks as follows:

$viewKey = getRequest("viewKey", false);

$adminKey = getRequest("adminKey", false);

if($viewKey=="" and $adminKey=="") exitError("Missing tournament key");

The tournament will be correctly requested to be viewed without an admin key:

Data: valid action, valid view key, blank admin key:

Data: valid action, valid admin key

49

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Review: The tests demonstrate that the script is robust.

Now for trying out a post from the client to the server. Here are the relevant updates to the

Javascript:

loadTournament(id, viewKey, adminKey) {

 this.showScreen('Loading'); //show the loading screen

 doPost({action:'load', tournamentId:id, viewKey:viewKey, adminKey:adminKey},

this.gotLoadTournament);

 }

 gotLoadTournament(result) {

 console.log(result)

 }

 showScreen(name) {

 $('.screen').hide();

 $('#screen'+name).show();

//For the time being - all help messages are being cleared so errors can be displayed

 $('.helpMessage').text(""); //clear help/error message.

 }

}

function doPost(data, successCallback) {

 //reference: https://api.jquery.com/jquery.post/

 $.post({url:"tournament.php", data:data, complete: function (data) {

 try {

 var result = jQuery.parseJSON(data.responseText); //convert result from

text to a JSON object

 var success=false

 if (result.data.error!=undefined) { //check to see if the server returned

an error...

 $('.helpMessage').text(result.data.error) //show the error

 } else {

 success=true

 }

 } catch (e) { //what happens if the server does not respond - either is offline or

error occurred.

 $('.helpMessage').text("The server did not respond or an error occurred on

the server. Check your internet connection and try again.")

 }

 if(success) successCallback(result.data) // call the callback and send the data

returned by the server

 },

 fail: function(e) {

 console.log(e)

 $('.helpMessage').text("The server did not respond. Check your internet connection

and try again.")

 }})

}

Prototype outcomes:

With a valid URL, the match data is returned to the client:

50

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

With an invalid URL, an appropriate error message is displayed:

Review: Given a valid URL, a tournament can now be fetched from the server’s database

and returned to the client. There is a lot of error checking to handle errors resulting in user-

friendly error messages. The database table has been designed to store all of the required

data to date.

Tournament standings: Processing the tournament data

This section all links to the functional requirements of being able to load and view

tournament data.

gotLoadTournament(tournament) {

 console.log(tournament)

 this.tournament = tournament

 this.adminMode = (this.tournament.adminKey!=undefined)

 if(this.adminMode) {

 this.showScreen("Settings")

 } else {

 this.showScreen("Matches")

 }

}

Justified changes from the design:

- Minor: variables renamed for clarity.

- This method does not need to handle error messages as it is done by the doPost

routine instead. This will save having to repeat similar code.

Testing - before

51

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

‘this’ was not defined as the context in which the callback (getLoadTournament) was called

was incorrect:

doPost({action:'load', tournamentId:id, viewKey:viewKey, adminKey:adminKey},

this.gotLoadTournament);

Testing - after

This was easily fixed by binding the context on to the callback:

doPost({action:'load', tournamentId:id, viewKey:viewKey, adminKey:adminKey},

this.gotLoadTournament.bind(this));

The code now works as the code proceeds without error to show the tournament data in the

console:

Review: The tournament data is successfully loaded to the client. I need to keep in mind the

scope of functions when writing code to avoid any further “undefined” errors.

Usability: Navigation and showing each “screen”

This section further adds to meeting the requirement of creating an intuitive user interface.

For the ‘setup screen’ to work I have updated the HTML for the navigation buttons:

<button class='navButton selected btnSettings'

onclick="tournament.showScreen('Settings');">Settings</button>

<button class='navButton' onclick="tournament.showScreen('Matches');">Matches</button>

<button class='navButton' onclick="tournament.showScreen('Standing');">Standing</button>

<button class='navButton' onclick="tournament.showScreen('Help');">Help</button>

52

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

I added the following JS:

setupScreen(name) {

 if(!this.adminMode) {

 $(".btnSettings").hide()

 } else {

 $(".btnSettings").show()

 }

 if(name == "Settings") {

 this.showTournamentURLs()

 this.showTournamentTeams();

 } else if (name=="Matches") {

 this.showMatches()

 } else if (name=="Standing") {

 this.showStanding()

 }

}

Prototype - testing page launch - Before

The ‘settings’ button does not appear when it should.

After:

I updated the ‘createNewTournament’ method to set adminMode to true when a new

tournament is created.

createNewTournament() {

 this.createDefaultTournament();

 this.adminMode=true

 this.showScreen("Settings")

 }

This fixes the problem.

53

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Testing button clicks - Before

Button clicks result in an undefined error

Testing button clicks - After

I changed the scope of the ‘tournament’ object, firstly by adding this line of code to the top of

the script to define a global variable:

var tournament

And then removing the word ‘var’ inside of the newTournament function so that ‘tournament’

is not local to the function.

function newTournament() {

 tournament = new Tournament() //var= has been removed.

 tournament.processURL()

}

Clicking the ‘help’ button now changes the screen without error.

There is still a problem as there is not currently code to change the style of the button when

it is clicked. To enable this to happen, the HTML has been updated to include a class name

for each button:

54

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

<div class='navigation'>

<button class='navButton selected btnSettings'

onclick="tournament.showScreen('Settings');">Settings</button>

<button class='navButton active btnMatches'

onclick="tournament.showScreen('Matches');">Matches</button>

<button class='navButton active btnStanding'

onclick="tournament.showScreen('Standing');">Standing</button>

<button class='navButton active btnHelp' onclick="tournament.showScreen('Help');">Help</button>

</div>

After navigation formatting updates:

Updated CSS to improve the visual appeal and clarity of the navigation:

 .navigation {text-align:center;background-color:#eee;}

 .navButton {

 display: inline-block;

 vertical-align:middle;

 padding:10px 20px 10px 20px;

 margin: 10px;

 text-align:center;

 border:0px;

 user-select: none;

 font-size:1rem;

 color:white;

 cursor:pointer;

 background-color: #999;

 Outline:none;

border-radius:40px;

 }

 .navButton.selected {background-color:#333}

 .navButton.selected:hover {background-color:#111}

 .navButton.inactive {opacity: 0.6;}

 .navButton.active {}

 .navButton.active:active {background-color: #555;}

 .navButton.active:hover {background-color: #777;}

After code to control the appearance of buttons:

showScreen(name) {

 $('.screen').hide();

 $('#screen'+name).show();

 $('.helpMessage').text(""); //clear help/error message.

 this.setNavigation(name)

 this.setupScreen(name);

}

setNavigation(name) {

 $('.navigation').find('button').removeClass('selected active').addClass('active')

 $('.btn'+name).removeClass('active').addClass('selected')

}

55

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Review: The button navigation styles were originally messy and I omitted changing button

style from the project design. However, the styles have now been updated and code is used

to swap the class style for the navigation buttons which now make for an effective navigation

system as the contrasting colours makes clear to the user how the navigation bar functions.

Usability: Help message location

This section is about meeting the requirement of providing user-friendly error messages. As

every screen has a help message, I have removed the HTML occurrence of .helpMessage

from within each screen div and added a single help message that appears outside of the

screen DIVs:

<div class='helpMessage'>Error or help message to appear here.</div>

Review: This simple change reduces the amount of repetitive HTML code.

Tournament Access URLs

This section is about the functional requirement of using unique tournament URLs to view

and access tournaments. JS was written to show the tournament URLs:

showTournamentURLs() {

 //check to see if a view key is defined...

 if(this.tournament.viewKey=="") {

 $('.helpMessage').text("To create a new tournament, add a tournament name and

teams.");

 $('#viewURL').text("");

 $('#adminURL').text("");

 } else {

 //create tournament URLs by combining the URL origin, path and required search

parameters.

 let url = new URL(window.location.href);

 let search = '?tournamentId=' + this.tournament.tournamentId

 $('#viewURL').text(url.origin + url.pathname + search + "&viewKey="

+this.tournament.viewKey)

 $('#adminURL').text(url.origin + url.pathname + search + "&adminKey="

+this.tournament.adminKey)

 }

}

The CSS was also updated:

.accessURLs div {display:inline-block;line-height:1.5;text-decoration:underline;color:grey;text-

decoration-style: dashed; cursor:pointer}

When the page is loaded with the test parameters it appears as follows:

56

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Text cannot be directly copied. Instead, a temporary text input has to be created. Text is

copied to the input box, selected with code and then copied to the clipboard. To do this, I

utilised code I wrote for another project:

class Clipboard {

 static copyText(t) {

 if(t != '') {

 var currentFocus = document.activeElement;

 var target = Clipboard.createCopyTarget('textarea')

 target.textContent = t;

 target.focus();

 target.setSelectionRange(0, target.value.length);

 var succeed = navigator.clipboard.writeText(target.value);

 target.parentNode.removeChild(target);

 // restore original focus

 Clipboard.setFocus(currentFocus)

 }

 return true;

 }

 static createCopyTarget(tag) {

 var target = document.createElement(tag);

 target.style.position = "absolute";

 target.style.left = "-300px";

 target.style.top = "0";

 target.style.width = "200px";

 target.style.height = "200px";

 document.body.appendChild(target);

 return target

 }

 static setFocus(f) {if(f != undefined) {if (f && typeof f.focus === "function") f.focus();}}

}

This is implemented as a static class so it can be reused across multiple projects.

The HTML was updated to call a function that will copy the link to the clipboard.

<h1>Access Web site addresses</h1>

<div class='accessURLs'>

View:

<div id='viewURL' onclick='Clipboard.copyText($(this).text())' title='Click to copy to

clipboard'>https://view url here</div>

Admin:

<div id='adminURL' onclick='Clipboard.copyText($(this).text())' title='Click to copy to

clipboard'>https://admin url here</div>

</div>

Testing: The links were successfully copied to the clipboard.

57

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Sorting Teams

This section ties into the requirements concerning the match management.. The following

addresses the design requirements for teams to be loaded into alphabetical order:

showTournamentTeams() {

 $('.teams').empty();

 this.sortTeamsBy('name');

 var teams = this.tournament.teams;

}

sortTeamsBy(key, isAscending=true) {

//use a custom sort function that'll look something like this to sort the teams by a key, e.g.

number of points scored.

 this.tournament.teams.sort(function(a, b) {

 if(isAscending) {

 if(a[key] > b[key]) return 1

 if(a[key] < b[key]) return -1

 return 0

 } else {

 if(a[key] < b[key]) return 1

 if(a[key] > b[key]) return -1

 return 0

 }

 })

 }

An array of objects cannot be sorted with a standard ‘sort’. This is why a custom sort

function has been written which takes account of an object key. If items need to be swapped

from left to right then the function needs to return 1. The inverse is -1 and no swap is a 0.

Testing: The console shows that the sorting function has worked:

Review: The teams can be sorted into the desired order using a custom sort function. The

sortTeamsBy method has been designed and implemented as a reusable function to save

writing additional code when teams will need to be sorted by “points scored” later in the

project. Before I continue with showing the teams, I will handle the displaying and updating

of the tournament name which at this point makes more sense to do as it has come to mind

that the displaying of the tournament name upon loading tournament data is missing from

the design.

Displaying the tournament name

This section ties into the requirements of creating a user-friendly display and being able to

view tournament data. I have updated the ‘gotLoadTournament’ to show the tournament

58

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

name and set whether or not the input box in which it is displayed is enabled for editing

depending on whether the tournament is in ‘view’ or ‘admin’ mode:

gotLoadTournament(tournament) {

 this.tournament = tournament

 this.adminMode = (this.tournament.adminKey!=undefined)

 $('#txtTournamentName').prop('value', tournament.name).prop('disabled',!this.adminMode)

 if(this.adminMode) {

 this.showScreen("Settings")

 } else {

 this.showScreen("Matches")

 }

}

Testing: The tournament name now appears (it was renamed from ‘demon’ to ‘demo’ in the

database which was a typo.)

Review: Simply adding one line of code has implemented the required change. I will now

move on to being able to edit the name and send it back to the database.

Tournament management: Naming/Renaming the tournament

This section is about an enhancement of the tournament creation functionality whereby the

user will be able to easily rename a tournament by making it so when the user presses

enter, the box will lose focus which will trigger the program to save the new name. I will also

make it so if a user is typing a name and changes their mind, they will be able to press the

escape key to cancel the change. Although this is not in the design, it adds usability and is

relatively easy to do, hence why I will include this functionality.

The underlined code from earlier has been changed further:

$('#txtTournamentName').prop('value', tournament.name).prop('disabled',!this.adminMode).prop('data-

oldvalue',tournament.name)

This ‘old value’ (which FYI has to all be in lowercase and not camelcase or it wont work) will

allow for the value of the input box to be reverted.

I have updated the HTML as follows:

<input id='txtTournamentName' type="text" placeholder="Enter tournament name"

59

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

onkeydown="doKeyDown(event, this)" onblur="tournament.nameTournament()"/>

And added the following JS:

function doKeyDown(event, obj) {

 obj = $(obj)

 if(event.keyCode==13) {

 obj.blur()

 } else if(event.keyCode==27) {

 let oldValue = obj.prop('data-oldvalue')

 if(oldValue != undefined) {

 obj.prop('value', oldValue)

 obj.blur()

 }

 }

}

Testing: It works: Pressing enter will ‘blur’ the box and ‘escape’ will revert to its previous

value.

The ‘nameTournament’ and ‘saveTournament’ methods are currently as follows:

nameTournament() {

 let name = $('#txtTournamentName').prop('value'); //get the new name

 let oldName = $('#txtTournamentName').prop('data-oldvalue')

 if(name!=oldName) {

 $('#txtTournamentName').prop('data-oldvalue', name); //update 'old' value so it can

be reverted on ESC

 this.tournament.name = name

 this.saveTournament()

 }

}

saveTournament() {

 if(this.tournament.teams.length < 2 || this.tournament.name=="") {

 $('.helpMessage').text("The tournament will not save until there is a tournament

name and at least two teams.");

 } else {

 doPost({action:'save', tournament:this.tournament},

this.gotSavedTournament.bind(this));

 }

}

Justified changes from the design:

- The error checking for a missing tournament name has been moved to the ‘save

tournament’ method so that there only needs to be one occurrence of setting a help

message.

Testing: It works - the correct helpful error message is shown if a tournament name is not

entered:

60

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Server side - saving the tournament data - validating the JSON

This section ties into the objective of being able to save tournament data in such a way that

it can be accessed by others.

To start with, I developed this code in isolation from the main program so that it can be

thoroughly tested.

function saveTournament() {

 //$tournament = getRequest["tournament"];

 $tournament =

'{"name":"Demontournament","teams":[{"number":0,"name":"Eagles"},{"number":1,"name":"Dolphins"},{"nu

mber":2,"name":"Lions"},{"number":3,"name":"Falcons"}],"matches":[{"home":0,"away":1,"homeGoals":1,"

awayGoals":1},{"home":2,"away":0,"homeGoals":2,"awayGoals":1},{"home":0,"away":3,"homeGoals":null,"a

wayGoals":null},{"home":2,"away":1,"homeGoals":null,"awayGoals":null},{"home":1,"away":3,"homeGoals"

:null,"awayGoals":null},{"home":3,"away":2,"homeGoals":null,"awayGoals":null}]}';

 try {

 $tournament = json_decode($tournament);

 } catch (Exception $e) {

 exitError("The tournament data is invalid");

 }

 $template = '{

 "name": {

 "allowed": ["string"]},

 "teams": {

 "allowed": ["array"],

 "template": {

 "number": {

 "allowed": ["integer"]

 },

 "name": {

 "allowed": ["string"]

 }

 }

 },

 "matches": {

 "allowed": ["array"],

 "template": {

 "home": {

 "allowed": ["integer"]

 },

 "away": {

 "allowed": ["integer"]

 },

 "homeGoals": {

 "allowed": ["integer", "NULL"]

 },

 "awayGoals": {

61

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 "allowed": ["integer", "NULL"]

 }

 }

 }

}';

 $template = json_decode($template);

 if(isItValid($tournament, $template)) {

 echo "ok";

 } else {

 echo "not ok";

 }

}

As detailed in the design, the JSON validation will work by comparing the tournament data to

a template that determines which keys the tournament data is allowed to have and checks

that each of the key’s values are of an expected data type.

Here is the validation code:

function isItValid($original, $template) {

 if(gettype($original)=="array") {

 //check that each element in the array is valid.

 foreach($original as $item) {

 return isItValid($item, $template);

 }

 } else {

 foreach ($original as $key => $value) { //go through each key in the original

 //check to see if the key (AKA 'property') exists in the template

 if(!property_exists($template,$key)) {

 echo "Invalid key detected: ".$key;

 return False;

 }

 //check that the data type of the key's value is allowed...

 $valueDataType = gettype($value);

 $allowedTypes = $template->$key->allowed;

 //see if the value data type is in any of the allowed types for this key:

 if(!in_array($valueDataType, $allowedTypes)) {

 echo "Unexpected data type for key ".$key.". Got ".$valueDataType."

and expected: ".implode(" or ", $allowedTypes)."
";

 return False;

 }

 //if we're looking at an array then need to recursively call this function

to be able to go through the array and check each part of the array is valid

 if($valueDataType=="array") isItValid($value, $template->$key->template);

 }

 }

 return true;

}

62

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Testing: The code appears to work:

To thoroughly test it, I will change the template so that the ‘name’ key now expects an

‘integer.

I have tested this script by changing data types and the original JSON structure to check that

it works.

Review: Whilst the script successfully checks the JSON document only contains valid keys

and that each key value is of a valid data type, at present, something this script does not do

is check for any keys that might be missing. E.g. the tournament might be missing a key for

‘name’ and this would go undetected at present.

After: To make sure that the JSON contains required keys, I added the following to the

isItValid function:

//check that the JSON contains any 'required' keys

foreach($template as $key => $value) {

 if($value->required==true) {

 if(!property_exists($original,$key)) {

 echo "Missing required key ".$key;

 return false;

 }

 }

}

Review: This above was omitted from the design but is vital to ensure that the JSON data

structure is robust. The final change has been to output all errors using ‘exitError’ instead of

‘echo’ so that the script will integrate with the client.

Finishing tournament save

At present, the saveTournament function makes use of a hard-coded tournament object to

check that it works. The code should be self-explanatory and builds on from the previous

code.

function loadTournament() {

 //get data sent:

 $tournamentId = getRequest("tournamentId");

 $viewKey = getRequest("viewKey", false);

 $adminKey = getRequest("adminKey", false);

63

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 if($viewKey=="" and $adminKey=="") exitError("Missing tournament key");

 $mode = ($adminKey!="") ? "admin" : "view"; //set the mode (admin or view)

 $key = ($mode=="admin") ? $adminKey : $viewKey; //set key according to mode

 //select the tournament record from the database (query)

 //prepared statement so no SQL injection attack is possible:

 $row = dbPrepareSelectRow("SELECT * FROM tournaments WHERE ".$mode."Key=? AND tournamentId=?

AND isDeleted=0", array($key, $tournamentId));

 if($row==null) exitError("No such tournament exists :-("); //record not found.

 //add the key and tournament ID to the tournament JSON data:

 $tournament = json_decode($row['tournament']);

 $tournament->viewKey = $row["viewKey"];

 $tournament->tournamentId = $row["tournamentId"];

 if($mode=="admin") $tournament->adminKey = $row["adminKey"];

 //update when the tournament was last accessed

 dbPrepareQuery("UPDATE tournaments SET dateLastAccessed=NOW() WHERE tournamentId=?",

array($row["tournamentId"]));

 //output the data for the client to receive.

 outJSON($tournament);

}

function saveTournament() {

 //$tournament = getRequest["tournament"];

 $tournament = '{"tournamentId":1, "viewKey":"abcdefghijklmnopqrst",

"adminKey":"abcdefghijklmnopqrst", "name":"Demo

Tournament","teams":[{"number":0,"name":"Eagles"},{"number":1,"name":"Dolphins"},{"number":2,"name":

"Lions"},{"number":3,"name":"Falcons"}],"matches":[{"home":0,"away":1,"homeGoals":1,"awayGoals":1},{

"home":2,"away":0,"homeGoals":2,"awayGoals":1},{"home":0,"away":3,"homeGoals":null,"awayGoals":null}

,{"home":2,"away":1,"homeGoals":null,"awayGoals":null},{"home":1,"away":3,"homeGoals":null,"awayGoal

s":null},{"home":3,"away":2,"homeGoals":null,"awayGoals":null}]}';

 try {

 $tournament = json_decode($tournament);

 } catch (Exception $e) {

 exitError("The tournament data is invalid.");

 }

 $template = '{

 "tournamentId": {

 "allowed":["integer"],"required":true

 },

 "viewKey": {

 "allowed":["string"],"required":true

 },

 "adminKey": {

 "allowed":["string"],"required":true

 },

 "name": {

 "allowed": ["string"], "required":true

 },

 "teams": {

 "allowed": ["array"],

 "required":true,

 "template": {

 "number": {

 "allowed": ["integer"], "required":true

 },

 "name": {

 "allowed": ["string"], "required":true

 }

 }

 },

 "matches": {

 "allowed": ["array"],

64

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 "required":true,

 "template": {

 "home": {

 "allowed": ["integer"], "required":true

 },

 "away": {

 "allowed": ["integer"], "required":true

 },

 "homeGoals": {

 "allowed": ["integer", "NULL"], "required":true

 },

 "awayGoals": {

 "allowed": ["integer", "NULL"], "required":true

 }

 }

 }

}';

 $template = json_decode($template);

 if(!isItValid($tournament, $template)) exit();

 //get values that are stored in record fields from the tournament:

 $tournamentId = $tournament->tournamentId;

 $adminKey = $tournament->adminKey;

 $viewKey = $tournament->viewKey;

 //remove them from the tournament JSON as they are used and stored elsewhere.

 unset($tournament->tournamentId);

 unset($tournament->viewKey);

 unset($tournament->adminKey);

 if($tournamentId==0 && $adminKey=="" && $viewKey=="") {

 //it is a new record

 $viewKey = generateKey(20); //generate 20 character random key

 $adminKey = generateKey(20); //generate 20 character random key

 dbPrepareQuery("INSERT INTO tournaments(tournament, viewKey, adminKey) VALUES(?, ?,

?)", array(json_encode($tournament), $viewKey, $adminKey));

 $tournamentId = dbLastId();

 } else {

 //check the adminkey is valid...

 if(!doesTournamentExist($tournamentId, $adminKey)) exitError("This tournament does

not exist and cannot be saved");

 dbPrepareQuery("UPDATE tournaments SET tournament=? WHERE tournamentId=?",

array(json_encode($tournament), $tournamentId));

 }

 //re-appeand the tounamentID and keys (so that if it is a new tournament that these details

can be picked up by the client

 //NB PHP5.4+ does not allow $tounament->tournamentId = $tournamentId;. See

https://stackoverflow.com/questions/11618349/how-to-add-property-to-object-in-php-5-3-strict-mode-

without-generating-error

 $tournament->{"tournamentId"} = $tournamentId;

 $tournament->{"viewKey"} = $viewKey;

 $tournament->{"adminKey"} =$adminKey;

 outJSON($tournament);

}

function doesTournamentExist($tournamentId, $adminKey) {

 //check that the tournament already exists in the database.

 $row = dbPrepareSelectRow("SELECT tournamentId FROM tournaments WHERE adminKey=? AND

tournamentId=? AND isDeleted=0", array($adminKey,$tournamentId));

65

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 return ($row!=null);

}

function generateKey($length) {

 $codeAlphabet = "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";

 $key = "";

 $max = strlen($codeAlphabet);

 for ($i=0; $i < $length; $i++) {

 $key .= $codeAlphabet[mt_rand(0, $max-1)];

 }

 return $key;

}

Testing: Changing the tournament name: I’ve changed the hardcoded tournament name in

the demo data to ‘Hello World’ to see if this change is reflected in the database.

The script outputs the tournament as expected and this change is reflected in the database.

{"data":{"name":"Hello

World","teams":[{"number":0,"name":"Eagles"},{"number":1,"name":"Dolphins"},{"number":2,"name":"Lion

s"},{"number":3,"name":"Falcons"}],"matches":[{"home":0,"away":1,"homeGoals":1,"awayGoals":1},{"home

":2,"away":0,"homeGoals":2,"awayGoals":1},{"home":0,"away":3,"homeGoals":null,"awayGoals":null},{"ho

me":2,"away":1,"homeGoals":null,"awayGoals":null},{"home":1,"away":3,"homeGoals":null,"awayGoals":nu

ll},{"home":3,"away":2,"homeGoals":null,"awayGoals":null}],"tournamentId":1,"viewKey":"abcdefghijklm

nopqrst","adminKey":"abcdefghijklmnopqrst"}}

Creating a new tournament: I’ve changed the hardcoded tournamentId to 0 which should

result in a new tournament being created.

A new record has been created:

And the script outputs the tournament to include the new tournament ID and keys:

{"data":{"name":"Hello

World","teams":[{"number":0,"name":"Eagles"},{"number":1,"name":"Dolphins"},{"number":2,"

name":"Lions"},{"number":3,"name":"Falcons"}],"matches":[{"home":0,"away":1,"homeGoals":1

,"awayGoals":1},{"home":2,"away":0,"homeGoals":2,"awayGoals":1},{"home":0,"away":3,"homeG

oals":null,"awayGoals":null},{"home":2,"away":1,"homeGoals":null,"awayGoals":null},{"home

":1,"away":3,"homeGoals":null,"awayGoals":null},{"home":3,"away":2,"homeGoals":null,"away

Goals":null}],"tournamentId":"2","viewKey":"bnStG72Pm97xaIHd4DlS","adminKey":"9z8gG9KUAwC

zNZhK3yV2"}}

I will now change the hardcoded tournament to include an invalid key which is what

someone might do if they are trying to hack the tournament:

66

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

The script correctly outputs a message and no records are updated:

{"data":{"error":"This tournament does not exist and cannot be saved"}}

Review: Robust code has been written to store data back to the database. One might think

about adding further measures such that if the system detects someone trying a random

admin key then it would block out the user, for example by blocking their IP for a few

minutes. The script now needs to be tested without the hard coded tournament data. The

validation template will also have to be updated at some point as the client will add to it

further keys such as ‘points’, ‘goal difference’ etc.

To get the script working with the client, I needed to make some changes.

- When loading the tournament, I need to make sure that the tournamentID is

appended explicitly as an integer so at no point is it ever treated as a string:
$tournament->tournamentId = intval($row["tournamentId"]);

- Also when saving the tournament, the tournamentId has to be set as an integer:
 $tournament->{"tournamentId"} = intval($tournamentId);

- When posting the data from the client to the server, the tournament JSON object

needs to be explicitly converted to a string otherwise Jquery cannot send it to the

server: doPost({action:'save', tournament:JSON.stringify(this.tournament)},
this.gotSavedTournament.bind(this));

The title can now be changed and saved to the database.

The JS code has been updated as follows so that if it was a new tournament with a new

tournamentID and view/admin keys then this is reflected in the tournament JSON object at

the client:

gotSavedTournament(result) {

 this.tournament = result;

 $('.helpMessage').text("The tournament has just been saved.");

}

Adding/renaming/removing teams

This section is about meeting the requirement of being able to manage teams. The JS code

developed differs slightly from the design as I will explain.

showTournamentTeams() {

 $('.helpMessage').text("Make sure your tournament has a name and you have at least two teams

entered.");

67

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 $('.teams').empty(); //remove existing teams from the HTML

 this.sortTeamsBy('name'); //sort teams in alphabetical order

 let teams = this.tournament.teams; //get the teams

 let inputTag = '<input class="inpTeamName" type="text" placeholder="Enter team name">';

//create an input tag template

 for(let i=0;i<teams.length;i++) { //cycle through each team...

 let x = $(inputTag); //create an input box for it

 let number = teams[i].number //get the team number

 x.prop('data-number', number); //set the data item with this tag to the team number

 x.prop('value', teams[i].name).prop('data-oldvalue', teams[i].name); //set the

input value to the name of the team

 $('.teams').append(x) //append the input tag to the teams part of the HTML document

 }

 this.appendBlankTeamInput()

}

Justified changes from the design:

- Updates the help text which will improve the usability.

- Removes any existing text boxes $(‘teams’).empty() so that it doesn’t keep

generating boxes every time it goes to the page. In a future version it could just

generate the boxes once and then flag that the boxes have been created and if the

flag is set the routine could simply return. However, the benefit of emptying the input

boxes every time is that it resorts the teams into alphabetical order so any new teams

added will be put into order the next time this part of the app is visited.

- An additional reused method for appending a blank team (below) so an additional

team can be inputted. The user does not have to select the number of teams

participating - a new input box will appear every time a user enters a team name.

appendBlankTeamInput() {

 let inputTag = '<input class="inpTeamName" type="text" placeholder="Enter team name">';

//create an input tag template

 let x = $(inputTag); //create one further input box (a blank box for adding another team if

desired

 x.prop('data-number', null); //set the team number. "null" indicates that it is a new team.

 $('.teams').append(x) //append the tag

 let self=this; //used on the line below so the scope is correct

 //add event handlers. Key down will add another input box if needed, revert to previous text

if escape key down, save if enter key down, highlight the box if the team already exists.

 $('.inpTeamName').off().on('blur', function(){self.setTeam(this)}).on('keydown',

function(event) {self.teamKeyDown(event,this)}).on('keydown', function() {doKeyDown(event,

this)}).on('keyup', function(){self.teamKeyUp(this)});

}

The above was written to add an additional blank team input box and key handlers for the

input boxes to allow for additional usability functionality:

- pressing the escape key will revert back to the previous version and when moving

away from the box the team name is processed.

- As soon as a key has been pressed and released, it will check to see if the team

name already exists. If it does it at this point before the box loses focus then it will be

quicker for the user to modify the team name.

setTeam(obj) {

 let teamName = $(obj).prop('value').trim() //get team name from the input, removing any

superfluous whitespace

68

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 let oldTeamName = $(obj).prop('data-oldvalue') //get the old team name

 if (teamName != oldTeamName) { //if it has been renamed/added then...

 let teams = this.tournament.teams //get reference to teams

 let index = $('.inpTeamName').index(obj) //get the index of the team so it can be referred

to

 let teamNumber = $(obj).prop('data-number')

 if (teamName == "" || !this.doesTeamNameAlreadyExist(obj)) {

 if (teamNumber == null) { //If the input does not have a team number then it is a new

team.

 if (teamName == "") {

 if (index != ($('.inpTeamName').length-1)) $(obj).remove() //remove the input

object if not the last one

 } else {

 teamNumber = this.getNextTeamId() //get a unique ID for the team

 teams.push({

 name: teamName,

 number: teamNumber

 }); //create an object for the team

 $(obj).prop('data-number', teamNumber); //add the team number to the input box

 $(obj).prop('data-oldvalue', teamName) //set the 'oldvalue' to enable revertion

on escape

 this.generateMatches(); // generate matches

 }

 } else {

 if (teamName == "") { //delete team as it no-longer has a name

 teams.splice(index, 1); //remove it from the teams

 this.deleteMatches(teamNumber) //delete matches for this team number

 $(obj).remove() //remove the input object

 } else { //rename existing team

 teams[index].name = teamName

 $(obj).prop('data-oldvalue', teamName) //set the 'oldvalue' to enable revertion

on escape

 }

 }

 this.saveTournament() //save back to server

 }

 }

}

This code is written to ‘set’ the team name (adds, renames or deletes). Justified reasons for

changes from the design:

- Adding a blank input box so an additional team can be entered is now handled by the

‘teamKeyDown’ method below. This is so that a new input box appears immediately

when a user starts typing in a new team name rather than waiting until the user clicks

away from the input box. This makes it immediately obvious to the user that new

teams can be added.

- Whether or not the team already exists is handled by an additional method. This is so

that the method can be reused and it also makes the routine easier to understand.

doesTeamNameAlreadyExist(obj) {

 let teamName = $(obj).prop('value').trim(), teamNumber = $(obj).prop('data-number'), teams

=this.tournament.teams, exists=false, i=0

 while(i<teams.length && exists==false) { //iterate through the teams

 if(teams[i].number!=teamNumber && teams[i].name.toLowerCase() ==

teamName.toLowerCase()) { //found another team with the same name

 $(obj).css('background-color', '#FFCCCB'); //change the background colour

to light red

 $('.helpMessage').text("Team name already exists!"); //also show a message

69

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 exists=true //set flag

 }

 i+=1

 }

 if(!exists) $(obj).css('background-color', '#ffffff'); //if a team with the same name

doesn't exist then revert background colour to white

return exists

}

The above reusable method fulfils the design requirement of notifying the user if the entered

team name already exists. In addition to displaying a message, it highlights the input box to

immediately bring attention to the user that the team name already exists.

getNextTeamId() { //find the highest existing ID then add one to get a unique ID

 let maxNumber=-1, teams =this.tournament.teams;

 for(let i=0;i<teams.length;i++) { //iterate through the teams

 if(teams[i].number > maxNumber) maxNumber = teams[i].number //update maxNumber

 }

 return maxNumber+1 //highest existing ID+1 is a new unique ID.

}

This method will find a new ID number for the next team name entered. As with similar

methods, as the team data is not ordered it has to be searched in a linear fashion.

teamKeyDown(event,obj) {

 //respond to key press on a team input.

 //If typing in a character then automatically a further team input box

 let index = $('.inpTeamName').index(obj)

 let totalInputs = $('.inpTeamName').length

 let isPrintableCharacter = (event.key.length === 1)

 if(isPrintableCharacter && index==(totalInputs-1)) this.appendBlankTeamInput();

}

This method responds to a key down event for the team input boxes. If a printable character

is pressed then it will automatically append another new team entry box to make it obvious

to the user that they can add as many teams as desired.

teamKeyUp(obj) {this.doesTeamNameAlreadyExist(obj);}

After a key is pressed, it calls the named method so that it detects in ‘real time’ whether a

team name already exists. This makes it quick for the user to address a mistake - i.e. they

don’t have to wait until clicking off the text box to discover that the team name already exists.

deleteMatches(teamNumber) { //delete matches with this team in as the team has been deleted.

 let matches = this.tournament.matches;

 //go through teams from high to low (otherwise deletion will not work correctly.)

 for(let i=(matches.length-1);i!=-1;i--) {

 //if the team is in the match then delete it.

 if(matches[i].home==teamNumber || matches[i].away==teamNumber) matches.splice(i,1)

 }

}

70

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

After a team is deleted, this method uses a linear method to find and delete matches with the

team number in them. The method has to be linear because the match data is unsorted.

generateMatches() {

 //initialise variables to be used:

 let matchNo = 0, otherTeam = 1, teams= this.tournament.teams, teamCount = teams.length,

homeNo=0, awayNo=0

 if(teams.length < 2) { //check there are at least 2 teams!

 $('.helpMessage').text("There needs to be at least two teams before matches can be

generated");

 return

 }

 /*

 The 'for' loop will pair up teams as follows (outer loop is the column, inner loop is for

the row)

 A forward slash represents a match made.

 A B C D

 A x / / /

 B x x / /

 C x x x /

 D x x x x

 */

 //outer loop

 for (let thisNo=0;thisNo<(teamCount-1);thisNo++) {

 //inner loop

 for (let otherNo=otherTeam; otherNo<teamCount; otherNo++) {

 //alternate who plays at "home" or who plays "away"

 if (matchNo % 2 == 0) {

 homeNo = teams[thisNo].number

 awayNo = teams[otherNo].number

 } else {

 homeNo = teams[otherNo].number

 awayNo = teams[thisNo].number

 }

 //Only add the match if it does not already exist:

 if(this.findMatch(homeNo, awayNo) == null) {

 this.tournament.matches.push({home:homeNo, away: awayNo,

homeGoals:null, awayGoals:null})

 }

 matchNo +=1

 }

 otherTeam+=1

 }

}

As discussed in the design, this method pairs up teams to create matches. The comments

in the code explain how it works.

findMatch(team1, team2) {

 //given two teams, return true if they already have a match.

 let matches = this.tournament.matches;

 for(let i=(matches.length-1);i!=-1;i--) {

 if((matches[i].home==team1 && matches[i].away==team2) || (matches[i].home==team2 &&

matches[i].away==team1)) return i

 }

 return null

}

71

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

The above method is needed so that it is impossible to generate a new match if the match

already exists. This is important as if the match fixture already exists then there will not end

up being duplicate matches.

Testing prototype

The following are examples of some of the extensive testing carried out to make sure that

teams can be added, removed and renamed:

Default loading result:

Data: A new team name

A new ‘enter team name’ box has appeared

as expected.

Teams and matches have been created

72

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Data: Lions (duplicate team name)

No new team/match data has been
created.

Data: Delete ‘Falcons’

The only potential problem here is that if the
first occurrence of ‘Lions’ is removed, then
the second highlighted version is not then

automatically created. This is not
necessarily a problem but it would improve

the usability if this was addressed.

Team and matches have been removed

73

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Review: The code works effectively and makes it very user-friendly to be able to add teams

without having to first specify how many teams to create. The code adds, removes and

renames teams, creates matches and distributes teams between playing at home and away.

There remains some problems and improvements that could be made:

- There is one issue from testing noted above.

- When a new team is created, the “generate matches” method should not have to

cycle through team numbers that do not include the new team number. This would

improve the efficiency of the algorithm.

Improving the match generation process:

As new games only need be created for each new team as it is added, the match generation

code can be refactored to:

generateMatches() {

 //initialise variables to be used:

 let matchNo = 0, otherTeam = 1, teams= this.tournament.teams, teamCount = teams.length,

homeNo=0, awayNo=0

 if(teams.length < 2) { //check there are at least 2 teams!

 $('.helpMessage').text("There needs to be at least two teams before matches can be

generated");

 return

 }

 let thisNo = (teams.length-1) //the new team to pair up with other teams.

 for(let otherNo=0;otherNo<(teams.length-1);otherNo++) { //other teams to play against

 //alternate who plays at "home" or who plays "away"

 if (matchNo % 2 == 0) {

 homeNo = teams[thisNo].number

 awayNo = teams[otherNo].number

 } else {

 homeNo = teams[otherNo].number

 awayNo = teams[thisNo].number

 }

 //add the match

 this.tournament.matches.push({home:homeNo, away: awayNo, homeGoals:null,

awayGoals:null})

 matchNo +=1

 }

}

Retesting

The refactored code will generate the correct matches, e..g when adding ‘Bears’ the

following is generated:

74

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Second Review: The benefit of refactoring this code is that it simplifies the code. Whilst

performance is arguably better, on modern computers the speed difference is trivial..

Matches - viewing and changing score

This section is about meeting the requirement of being able enter match outcomes.

showMatches() {

 $('#tblMatches').empty(); //empty existing matches from the table

 if(this.tournament.teams.length<2) { //if insufficient teams exist then do not show

the matches.

 $('.helpMessage').text("Add some teams in the settings before viewing

teams.");

 return

 }

 let matches = this.tournament.matches, rows='', self=this //set matches, rows

(stores output HTML) and reference to the scope of this method.

 //iterate through matches:

 for(let i=0;i<matches.length;i++) {

 //only display input boxes if in admin mode, otherwise generate table data

as normal

 if(this.adminMode) {

 rows += "<tr data-index='"+i+"'><td> " +

this.getTeamName(matches[i].home) + "</td><td><input min='0' type='number' value='"+

this.getGoals(matches[i].homeGoals) +"'></td><td>-</td><td><input min='0' type='number' value='"+

this.getGoals(matches[i].awayGoals) +"'></td><td>" + this.getTeamName(matches[i].away)+ "</td></tr>"

 } else {

 rows += "<tr><td> " + this.getTeamName(matches[i].home) +

"</td><td>"+ this.getGoals(matches[i].homeGoals) +"</td><td>-</td><td>"+

this.getTeamName(matches[i].away) +"</td><td>" + this.getTeamName(matches[i].away)+ "</td></tr>"

 }

 }

 $('#tblMatches').append(rows) // add the rows in one go to the document

 //add event handlers for being able to save changes and respond to key

presses/change in order to validate the number of goals

 $('#tblMatches').find('input').on('blur',

function(){self.updateMatchScore(this)}).on('keyup', function()

75

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

{self.checkScore(this)}).on('change', function() {self.checkScore(this)})

 }

This method empties any existing matches from view and then creates them as a table row

as the data lends itself to this manageable tabular format. Whether or not input boxes

appear is controlled by the ‘adminMode’ boolean variable as editing the scores will not be

persistent in view mode. Creating a string with the rows and then appending it to the

document is quicker than appending one row at a time. A further method was added to get

the team name from the team ID number. Event handlers were added to make the page

responsive - changes are saved straightaway and a nudge message appears if the number

of goals entered appears a little high in order to prevent an incorrect number of goals from

being entered. The method ‘getGoals’ was added as null values cannot be used as values

for input boxes and must therefore be converted to blank strings:

getGoals(n) {return (n==null) ? "" : n}

checkScore(obj) { //check to see if the score looks a little high and nudge the user if this is the

case

 let score = ($(obj).prop('value')=="") ? 0 : $(obj).prop('value')

 let msg = (score > 5) ? "That's a high score!" : ""

 $('.helpMessage').text(msg)

}

This method fulfils the design idea to warn the users if the number of goals entered seems

too high. This is to prevent the user from entering an incorrect number of goals. Assigning

values using a ternary approach makes the code succinct and easy to understand.

updateMatchScore(obj) { //update the match score in response to user inputting number of goals

 let score = ($(obj).prop('value') == "") ? null : $(obj).prop('value') //find the score -

must be an integer or null, not 'undefined'

 let matchIndex = $(obj).closest('tr').index() //find the match number index (which will be

the same as the row number in the table.

 let where = ($(obj).closest('td').index()==1) ? 'home' : 'away' //find whether home or away

which corresponds to where the table data cell is in the row

 this.tournament.matches[matchIndex][where+'Goals'] = score //update the match score

 this.saveTournament(); //save changes to the database

}

This method uses neat ternary operators for succinctness, finds match index and whether

home or away relative to the position of the row and column that the input box is on. Using

this method prevents having to create or pass further values to do with the match index.

getTeamName(number) {

 let teams = this.tournament.teams

 for(let i=0;i<teams.length;i++) { //cycle through each team...

 if (teams[i].number==number) return teams[i].name

 }

 return ""

}

76

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

This method will return the team name given its ID number. As mentioned before, teams

have ID numbers to avoid data redundancy.

Testing:

Problem fixed:

- Casting the value saved to the JSON structure to an integer by adding a ‘parseInt’ -

parseInt($(obj).prop('value')) when saving the number of goals otherwise it is

treated as a string and fails the server’s validation routine

Letters and numbers less than 0 cannot be entered as this is restricted by the input box.

Scores were entered as follows:

77

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

The tournament data updates correctly:

Review: The code works effectively although I do need to keep in mind that data is properly

casted into the expected data type.

Tournament Standings: Viewing

This section further explores how best to meet the requirement about viewing current match

standings. In hindsight, I’ve noticed that the code in the algorithm design for viewing the

team standings will not work because the teams at some point can get reordered which

means that the results will be assigned to the wrong team. A new approach for efficiently

working through the results is to create a dictionary that has the team IDs as keys and an

object for that team’s results. It will then be a cause of iteration through the matches and

updating the result for the relevant home and away team. I came up with this code:

showStanding() {

 $('#tblStanding').find('tbody').empty(); //empty existing table

 let matches = this.tournament.matches; //create reference to matches

 let teams = this.tournament.teams, results = [], match //create reference

 //create a dictionary indexed by the team's ID number. Indexing by team number

means the associated result dictionary can be quickly updated (see loop below)

 for(let i=0;i<teams.length;i++) {results[teams[i].number] = {name:teams[i].name,

played:0, wins:0, draws:0, losses:0, for:0, against:0, gd:0, points:0}}

 //go through each match to update the results

 for(let i=0;i<matches.length;i++) {

 match = matches[i] //create a reference to the match

 //skip a match if missing goal data

 if(match.homeGoals==null || match.awayGoals==null) continue;

 //update result stats...

 results[match.home].played +=1

78

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

 results[match.home].for += match.homeGoals

 results[match.home].against += match.awayGoals

 results[match.away].played +=1

 results[match.away].for += match.awayGoals

 results[match.away].against += match.homeGoals

 //update wins/losses/draws

 if(match.homeGoals > match.awayGoals) {

 results[match.home].wins += 1

 results[match.away].losses += 1

 } else if (match.awayGoals > match.homeGoals) {

 results[match.home].losses += 1

 results[match.away].wins += 1

 } else {

 results[match.home].draws +=1

 results[match.away].draws += 1

 }

 }

 //add goal difference and points scored based on for/against, wins,draws.

 for (let teamNumber in results) {

 let result = results[teamNumber]

 result.gd = result.for - result.against

 result.points = result.wins*3 + result.draws //i.e. 3 points for a win, 1

for a draw

 }

 /*

 https://www.quora.com/How-do-Premier-League-tables-work

 If two or more teams are tied on points, their position in the table is determined

by the following criteria, in this order:

1) Goal difference: The difference between the number of goals scored and the number of goals

conceded by the team over the course of the season.

2) Goals scored: The total number of goals scored by the team over the course of the season.

3) Head-to-head record: The results of the matches between the two teams. If they have the same

number of points and have drawn both their games, then this criterion is skipped.

4) Fair Play: The number of yellow and red cards each team has received throughout the season, with

the team having the fewest cards ranked higher.

 */

 //data is sorted 3 times to get the correct rank - see above. However points 3 and

4 above are not considered in this version.

 this.sortArrayContentBy(results, 'gd', false) //first sort by goals scored in

descending order

 this.sortArrayContentBy(results, 'gd', false) //then by goal difference in

descending order

 this.sortArrayContentBy(results, 'points', false) //then by number of points in

descending order

 //generate the html for the table to show on the screen

 let rows = "", rank=1

 for (let teamNumber in results) {

 let result = results[teamNumber]

 rows += "<tr><td>" + [rank,

result.name,result.played,result.wins,result.draws,result.losses,result.for,result.against,result.gd

,result.points].join('</td><td>') + '</td></tr>'

 rank+=1

 }

 //output the html row data

 $('#tblStanding').find('tbody').append(rows)

 }

79

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

I can’t offhand think of a more efficient way of generating the results for the standings table.

I renamed the ‘sortTeams’ method to ‘sortArrayOfObjectsBy’ so it can be used to sort both

the teams and the dictionary keys into the required order.

Updated ‘sortTeams’ method renamed to sortArrayContentBy:

sortArrayContentBy(obj, key, isAscending=true) {

 //use a custom sort function that'll look something like this to sort the teams by

a key, e.g. number of points scored.

 obj.sort(function(a, b) {

 if(isAscending) {

 if(a[key] > b[key]) return 1

 if(a[key] < b[key]) return -1

 return 0

 } else {

 if(a[key] < b[key]) return 1

 if(a[key] > b[key]) return -1

 return 0

 }

 })

 }

Testing: Several different scores have been entered and the standing table has been

checked accordingly:

The tables generate without issue.

Review: The design for this part of the project was incorrect but it was a good starting point.

It is important not to blindly follow the design but to think through the logic - as in this case -

to ensure that the developed version will work.

Tournament Creation: Enhancement

This section is about a further enhancement of meeting the requirements of having a

functional interface and smooth technique to create tournaments. When creating a new

80

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

tournament, instead of calling the ‘createNewTournament’ method, I have decided to simply

reload the page instead. This is because if the user loads an existing tournament via a

parameterised URL then creates a new tournament, pressing F5 will then reload the old

tournament:

reload() {

 let url = new URL(window.location.href);

 location.href = url.origin + url.pathname;

}

Testing: There remains a problem with this in that if after creating a new tournament the

user then presses F5, it will create another new tournament which is not desirable. This was

fixed by chainring the search parameters without reloading the page:

UPDATED:

showTournamentURLs() {

 //check to see if a view key is defined

 if(this.tournament.viewKey=="") {

 $('.helpMessage').text("To create a new tournament, add a tournament name and

teams.");

 $('#viewURL').text("");

 $('#adminURL').text("");

 } else {

 //create tournament URLs by combining the URL origin, path and required search

parameters.

 let url = new URL(window.location.href);

 let search = '?tournamentId=' + this.tournament.tournamentId, adminParams = search +

"&adminKey=" +this.tournament.adminKey

 $('#viewURL').text(url.origin + url.pathname + search + "&viewKey="

+this.tournament.viewKey)

 $('#adminURL').text(url.origin + url.pathname + adminParams)

 if(this.adminMode) history.replaceState(null, null, adminParams);

}

}

I have updated the following method as I missed a line of code to update the tournament’s

URLs on screen after saving a new tournament:

gotSavedTournament(result) {

 this.tournament = result;

 this.showTournamentURLs()

 $('.helpMessage').text("The tournament has just been saved.");

}

I accidentally left in “tournament name” as the name of a tournament. This needs to be

removed otherwise the placeholder text for the tournament does not appear.

Before:

createDefaultTournament() {

 this.tournament = {name:"Tournament name", teams:[], matches:[], viewKey:"", adminKey:"",

81

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

tournamentId:0}

}

After:
createDefaultTournament() {

 this.tournament = {name:"", teams:[], matches:[], viewKey:"", adminKey:"", tournamentId:0}

}

Usability: Final design changes

I have just got time to make some tweaks to the styling of the project in order to better meet

the requirement of creating a user-friendly interface that looks and feels easy-to-use.

82

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Post Development Testing and Evaluation
The following has been written in relation to the project’s success criteria.

The project has been successful at meeting its objectives and as such, users can

successfully use the app to create and manage their own round-robin style tournament with

ease, therefore satisfying the basic needs of anyone wanting to run a tournament.

Functionality

Tournament Creation: The ability to create a tournament

Success criteria:

a. Adding a tournament name so it can be identified

b. Enter the number of teams and team names (which can be unlimited) so that teams can

be identified.

c. Generating a valid user URL to allow data to be viewed by others so that data cannot

easily be changed by hackers

d. Generate an administrative URL to enable match data to be changed by only

administrators.

Testing:

Adding a name so it can be identified ✔

83

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

● Generating a user URL to allow data to be viewed by others so that data cannot

easily be changed by hackers ✔ (see above). Link tested and working

● Generate an administrative URL to enable match data to be changed by others.✔

● (see above). Link tested and working

Live demo

Testing shows that tournaments can be created with ease. The user can immediately enter a

tournament name which is saved automatically because a decision was made not to include

any ‘save’ buttons’. The same goes for adding team names. The flip side is that it took a

relatively long amount of time to code the project because code had to be written to respond

to blur events. However, from the user’s perspective this is very good as users do not have

to worry about having to click ‘save’ buttons. It is like modern applications that save user

data as they go along. It is also beneficial in that teams can be added, renamed and

removed throughout a tournament without impacting on the match results already stored.

This is because the coding takes care not to overwrite existing match fixtures. One potential

problem is that as soon as a team name is deleted and the focus of the input is lost, all of the

corresponding match fixtures are deleted. Users would need to take care not to click off an

input box when renaming a team as it could potentially result in data loss. One way to fix this

84

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

would be to add a message popup system to confirm deletion of the team. I could further

explore how to make modern reactive interfaces by exploring the “react” framework which is

a popular framework for creating consistent and user-friendly web user interfaces.

URLs are automatically generated for ease of access but could potentially be hacked via a

brute force attack. They could also be lost. This problem could be solved by implementing a

login system and/or the ability to email the links to the tournament administrator.

Fixture generation: Automatically create a schedule of matches for a

group tournament.

Success criteria:

a. The system will automatically create a schedule of matches for a group tournament

showing home and away teams, as balanced as possible so each team plays both

home and away. This is important for fairness.

The system will automatically create a schedule of matches for a group tournament. ✔

Testing shows that schedules are generated. The fixture generation works fairly well as it

attempts to balance out which team plays at home or away. However this could potentially

be improved by adding further checks to see if a team is playing a disproportionate number

of games at home or away. Furthermore, the interface could allow for swapping which team

plays where simply by adding a ‘swap’ button and then swapping over the values for ‘home’

and ‘away’ for each match. Furthermore, additional functionality could be added similar to

other tournament products which allows users to specify additional fixture information such

as time, date and location. Such data could easily be added to the JSON data.

Similar to adding the tournament name and team names, any score entered is automatically

saved. The input box restricts user input to successfully limit invalid data from being

introduced.

85

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Match management: The ability to record match results

Success criteria:

a. The person using the ‘admin’ link is able to enter match scores. Having a separate link

for the administrator and those viewing the tournament will prevent anyone unauthorised

from updating the match scores. Match scores need to be updated to be able to show

the standings.

The ability to record match results. ✔

Testing shows that results can be recorded. The team standing data is correctly displayed

and easily accessible via the navigation bar. The use of a table makes it easy to read the

data. It also incorporates some rules as to what to do in a tie-break situation. This could

further be improved by adding additional settings to determine how to handle tie-break

situations within the JSON data. This would make the project more usable in varied

situations.

Tournament standings: Anyone can view the tournament standings

Success criteria:

a. The ability for anyone with the ‘view’ URL to be able to view the tournament standings

so users can see how each team is progressing, to include basic group information

because this is what users will expect to see in a tournament:
a. Score for each match played

b. Wins

c. Draws

d. Losses

e. Games played

f. Points for

g. Points against

h. Goal difference

i. Points

86

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Live Demo

Testing shows that the URLs are correctly generated and can be used to access tournament

data with the desired group information. The access URLs are easy to copy because it

requires just one click. Users do not need to select the text first before copying - which can

be troublesome to do on mobile devices. The URLs work well because they include the

tournament ID and a key. The two versions make it straightforward for users to distribute

URLs to fellow tournament administrators or viewers. If an incorrect URL is entered then an

appropriate error message is displayed.

Usability: Ease of use, efficiency, error handling, user-feedback

Success criteria:

● Users can quickly understand and operate the program's functionalities without

requiring extensive training or technical knowledge, ensuring a low learning curve.

● Every part of the program will include visual labels and tooltips

● Buttons will be touch-screen friendly

● Users can complete tasks efficiently and perform operations with minimal effort and

clicks - 3 at the most, allowing them to manage the tournament smoothly and save

time.

● The program effectively communicates error messages:

● Error message section on a web page

● Messages are user-friendly and easy to understand

● All errors are ‘caught’

● Errors could include gracefully bowing out if the server happens to be offline.

● Users provide positive feedback regarding the program's ease of use, clarity of

instructions, and overall satisfaction with the user experience.

In addition to the usability points already mentioned: The ‘help’ page was not fully finished,

although it would not take long to add a tutorial video to explain how the generator works.

Testing:

87

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Ease of use: The program provides an intuitive and user-friendly interface that allows users

to easily navigate through different features, access necessary information, and perform

tasks without confusion.

User feedback suggests that the program is easy to use because of:

- Intuitive menu system

- One click copy for the URLs

- Team input boxes automatically appear

- Helpful messages at the top of the screen (as already shown)✔

- …but the ‘help’ page should be finished off with an explanation video.

The descriptively labelled menu items make the program easy to navigate. They are big

enough to be used on a touchscreen display, however the textboxes where goal scores are

entered could potentially be made slightly bigger so they are less fiddly to use on a

touchscreen:

88

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

It is possible to access any function within 3 mouse clicks therefore each element is quickly

accessible. Error messages are displayed and stand out, although perhaps using a different

style of formatting would help them to stand out further. This was addressed in a newer

version:

Old version:

There is extensive error checking throughout the program which minimises the occurrence of

errors and explains to the user what they need to do, for example the need to enter at least

two teams for the tournament to be created.

Further testing:

Efficiency: Users can complete tasks efficiently and perform operations with minimal effort

and clicks, allowing them to quickly manage the tournament.✔

89

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Error Handling: The program effectively communicates error messages and provides clear

instructions or suggestions to users when they encounter errors or make incorrect inputs.

For example, errors could include gracefully bowing out if the server happens to be offline.✔

User Feedback: Users have provided positive feedback regarding the program's ease of

use, clarity of instructions, and overall satisfaction with the user experience.✔

Robustness: stability, resilience, performance, compatibility,

scalability

Success criteria:

● The program will operate without crashes, freezes, or unexpected terminations,

providing a stable and reliable experience to users throughout the tournament.

● All inputs into the program will be validated. (I will expand upon this in the design

section - validation, test data, post-development testing). E.g. Only allow the user to

input 0 or positive integers for scores.

● Only storing a tournament/team data if the tournament has a name and at least two

teams.

● Validate the integrity of the JSON data structure to avoid malicious data from

impacting on the operation of the program.

● The program handles unexpected situations and user errors gracefully, preventing

data loss or corruption and maintaining data integrity. For example tournament data

written to the database should be fully committed rather than saving half of the data.

The code needs to include code to ‘catch-all’ exceptions.

● Error messages are shown to the end user

● The program will respond near-instantly to user interactions, load tournament data

immediately, and perform calculations or updates in a timely manner, ensuring a

smooth and responsive experience.

● The program works seamlessly across different platforms (e.g. Windows, macOS,

iOS, Android) and browsers (for web-based solutions), providing consistent

functionality and user experience.

● The program can handle a growing number of teams, matches, and data without

significant degradation in performance or functionality, accommodating the needs of

larger tournaments or expanding user bases.

Testing:

The user is restricted to entering positive integers for scores✔

Within the matches (shown above) it is only possible to enter positive integers.✔

The JSON data structure is thoroughly tested (as detailed during development) before being
inserted into the database thus preventing corrupt data from destroying the tournament.✔

90

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Theoretically it is possible for a user to spam the program - creating an unlimited number of

tournaments which would ultimately fill up the storage space on the database - to be

discussed in the evaluation. ✖

“Error messages” (helpful hints, nudges and information about anything that goes wrong) are
displayed at the top of each page.✔

 In relation to stability and security, there is scope to improve security:

1. Prevent users from spamming the database server with new tournament data which

could theoretically break the server as it would run out of space. This could be done

by limiting the number of new tournaments that come from a given IP address in a

given amount of time. Alternatively, tie in the app with Google Drive or similar so that

tournament data is stored elsewhere.

2. Add code to prevent brute force attacks. At current it would be possible for someone

to cycle through every possible admin code to gain unauthorised access to a

tournament. The code would lock out an IP address that uses an incorrect admin

key to access a tournament. Alternatively, making use of a single-login service and

an additional page to control access via authorised email addresses would make it

significantly more secure.

The project is very resilient to errors because of significant input validation and data

validation. The PHP code has a script to compare the JSON data with what is expected.

This works exceptionally well and would prevent a malicious user from submitting invalid

data. Writing the key elements of the project does not take long, but adding extensive

validation code is what takes up most of the time. There is a lot of “behind the scenes” code

that could easily be taken for granted by the user as it remains near invisible to them.

The web site loads almost instantly owing to the efficiency of the coding, lack of images that

can otherwise slow down the page and minimal use of frameworks that can otherwise add

91

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

bloat to a web site and impact its performance. All files are small resulting in minimal loading

time.

The project looks to be scalable although it has not been released “in the wild” to be able to

test how it performs with a significant number of users. Even with thousands of records, the

project performs well.

Spamming remains a potential issue which could be addressed by detecting the number of

tournaments generated within a timeframe and then putting a limit on it.

Performance
The program responds quickly to user interactions, loads data efficiently, and performs

calculations or updates in a timely manner, ensuring a smooth and responsive experience.

User feedback includes that the program is incredibly quick. ✔

Scalability

● I have generated 1000 tournaments and performance is fine.

● Testing with many simultaneous users is likely to be down to the hardware than the
programming.

92

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Compatibility

● The program works seamlessly across different platforms (e.g. Windows, macOS,

iOS, Android) and browsers (for web-based solutions), providing consistent

functionality and user experience.

Limitations: Extending the functionality of the project

Whilst the project largely meets its functional objectives, there remains a lot of functionality

in other programs that this one does not have, for example:

● The ability to create different tournament styles such as a bracketed tournament or a

tournament with legs and leagues. This would require lots of new coding and

rethinking the data structures.

● The ability to sign-in and manage services via popular services such as Google Sign-

in.

● Ease of access via QR code generation

● Customisable themes (colours and logos) to match the desired tournament branding

● The ability to select how rank order is determined, especially in the event of ties.

This could be achieved by adding further options in the settings and then adding

them as parameters to the already flexible JSON data.

A key potential problem is that if two people are tournament administrators and they are both

editing scores at the same time then only data from the last person to make a change will be

stored in the database. This could potentially be overcome by only sending the data that

changes to the database, and then having the server ping back changes to all open

connections and the client responding accordingly. This would require significant changes.

Another possible problem is that an administrator cannot delete the tournament. This may be

required when a tournament ceases to exist. This could easily be added by creating another

post request to the server but with a ‘delete’ action that responds by deleting the tournament

record.

93

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

Whilst overall my solution provides a sound service for creating tournaments, it lacks

features that can be found in more comprehensive existing solutions.

Maintenance

Corrective: The project is straightforward to maintain as from the code one can see how

each function or method has a specific purpose and contains sensible variable names and is

commented on as to how it works. The JSON structure keeps tournament data together for

ease of access and flexibility for storing further tournament information such as the date and

time of a fixture.

Here is an example of sensibly named variables and well-commented code to aid corrective

maintenance:

showTournamentTeams() {

 $('.helpMessage').text("Make sure your tournament has a name and you have at least two teams

entered.");

 $('.teams').empty(); //remove existing teams from the HTML

 this.sortTeamsBy('name'); //sort teams in alphabetical order

 let teams = this.tournament.teams; //get the teams

 let inputTag = '<input class="inpTeamName" type="text" placeholder="Enter team name">';

//create an input tag template

 for(let i=0;i<teams.length;i++) { //cycle through each team...

 let x = $(inputTag); //create an input box for it

 let number = teams[i].number //get the team number

 x.prop('data-number', number); //set the data item with this tag to the team number

 x.prop('value', teams[i].name).prop('data-oldvalue', teams[i].name); //set the input

value to the name of the team

 $('.teams').append(x) //append the input tag to the teams part of the HTML document

 }

 this.appendBlankTeamInput()

}

Adaptive: The project has been written with flexibility in mind and at current can be used on

mobile devices, tablets and desktop without issue, probably owing to the minimal interface

and keeping in mind mobile devices first when coming up with the interface. This has

already been illustrated. That said, the project may need adapting in the future to work with

up and coming technologies such as virtual reality headsets and voice recognition systems.

The project hasn’t been written with these in mind but it is hard to know what the future will

look like.

Perfective: As the performance of the site is very fast and it handles relatively little data, I

cannot immediately see any possible scope for perfective maintenance in relation to

performance. In relation to the interface, it could perhaps be made to look more appealing -

perhaps by applying or using the React Framework which benefits from immense usability,

function and aesthetic form.

Running Costs: The cost of maintaining a hosting service for such a website is minimal and

in no way would be prohibitive to being able to host the service for the foreseeable future.

The current website is complete and fully functional and therefore would require no on-going

time to maintain, however it would be prudent to periodically monitor use of the site to check

94

A. Student. Centre 12345. Candidate No: 1234.

https://buymeacoffee.com/clickschool www.laurencejames.co.uk

for anomalies or abusive use, for example excessive tournament creation or inappropriate

team names being entered.

Online Demo
Further undocumented iterative changes can be seen in the latest version:

[REDACTED]

View: [REDACTED]

Admin: [REDACTED]

